
Modeling Trajectory-level Behaviors
using Time Varying Pedestrian
Movement Dynamics

Aniket Bera · Sujeong Kim · Dinesh Manocha
University of North Carolina at Chapel Hill, North Carolina, USA,
E-mail: ab@cs.unc.edu, sujeong@cs.unc.edu, dm@cs.unc.edu

Received: 6 February 2018 / Accepted: 7 May 2018

DOI: 10.17815/CD.2018.15

Abstract We present a novel interactive multi-agent simulation algorithm to model pedes-
trian movement dynamics. We use statistical techniques to compute the movement pat-
terns and motion dynamics from 2D trajectories extracted from crowd videos. Our formu-
lation extracts the dynamic behavior features of real-world agents and uses them to learn
movement characteristics on the fly. The learned behaviors are used to generate plausi-
ble trajectories of virtual agents as well as for long-term pedestrian trajectory prediction.
Our approach can be integrated with any trajectory extraction method, including manual
tracking, sensors, and online tracking methods. We highlight the benefits of our approach
on many indoor and outdoor scenarios with noisy, sparsely sampled trajectory in terms of
trajectory prediction and data-driven pedestrian simulation.

Keywords Pedestrians · crowds · behavior learning · pedestrian dynamics · multi-agent

1 Introduction

The modeling of pedestrian movement dynamics has received considerable attention in
multiple fields, including computer-aided design, urban planning, robotics, and evacu-
ation planning. In many of these applications, the goal is to generate trajectories and
behaviors of virtual pedestrians that are similar to those observed of humans in real-
world environments. The most common approaches used to model pedestrian and crowd
movement are based on agent-based models that treat individuals as autonomous agents
who can perceive the environment to make independent decisions about their behavior or
movement. Agent-based methods have been well studied in different fields for decades

Collective Dynamics 3, A15:1–23 (2018) Licensed under

http://collective-dynamics.eu/
mailto:ab@cs.unc.edu
mailto:sujeong@cs.unc.edu
mailto:dm@cs.unc.edu
http://dx.doi.org/10.17815/CD.2018.15
http://collective-dynamics.eu/
http://collective-dynamics.eu/index.php/cod/issue/view/3
http://collective-dynamics.eu/index.php/cod/article/view/A15
http://creativecommons.org/licenses/by/4.0/

2 A. Bera · S. Kim · D. Manocha

and various formulations have been proposed for global and local navigation. However,
current approaches are unable to simulate the dynamic nature, variety, and subtle aspects
of real-world pedestrian motions.

Advances in sensor (e.g., camera) technologies have made it possible to easily capture
videos of pedestrian and crowd motion. Such videos are widely available on the Internet
(e.g., YouTube). It is possible to use computer vision methods to extract trajectories
of pedestrians from these videos. These trajectories correspond to the location of each
pedestrian on the walking plane as a time-dependent function. There is considerable
interest in utilizing these real-world trajectories to learn pedestrian behaviors and use
them for different applications. In particular, there is a new class of algorithms, called
data-driven pedestrian [1–4] or crowd simulation, in which such real-world trajectories
are used for simulating the pedestrians in a synthetic environment.

However, current techniques available to extract trajectories from videos have many
limitations and the use of such data-driven methods for pedestrian simulation is therefore
restricted. The accuracy of video tracking methods varies with the number of pedestrians
and crowd density as well as the video resolution and the illumination conditions. As a
result, use of these methods is currently limited to isolated pedestrians or sparse crowds.
Many behavior learning algorithms require a high number of training videos to learn the
movement patterns offline, and typically extract a fixed set of parameters that are used
as a global characterization of pedestrian behavior or trajectories; thus, they may not be
suited to capturing the dynamic nature or time-varying behaviors of pedestrians that are
observed in the real-world scenes.

Main Results:
In this paper, we present statistical algorithms to learn the characteristics of pedes-

trian movement from trajectories extracted from real videos. These characteristics are
used to compute collision-free trajectories of virtual pedestrians whose movement pat-
terns resemble those of pedestrians in the original video. Our approach is automatic and
interactive and captures the dynamically changing movement behaviors of real pedestri-
ans. We demonstrate its applications for many data-driven crowd simulations, where we
can easily add hundreds of virtual pedestrians, generate dense crowds, and change the
environment or the situation.

Our goal is to develop robust techniques that can account for noise in trajectory datasets
and extract high-level characteristics of time-varying pedestrian movement dynamics
(TVPMD). TVPMD is the descriptor of the movements of pedestrians at each point of
time, as opposed to the averaged over long sequence of inputs. Our techniques include
automatic and interactive approaches to extract the movement patterns and motion dynam-
ics of pedestrians. There is a large collection of crowd videos available on the Internet and
our statistical algorithms make it easier to extract a large library of dynamic movement
patterns for different real-world situations.

We present a fast method to learn the characteristics of pedestrian movement dynamics
from 2D trajectories extracted from a single video on the fly. First, our formulation mod-
els the group of pedestrians or the crowd as a complex system with non-linear dynamics
and computes the most likely state of each pedestrian from noisy trajectory data using
Bayesian inference. We then compute the TVMPD, the high-level characteristics of the

Modeling Trajectory-level Behaviors using TVPMD 3

Figure 1 Pedestrian Movement Dynamics Computation: Our method takes extracted trajectories of
real-world pedestrians as input. We use the Bayesian inference technique to estimate the most
likely state of each pedestrian. Based on the estimated state, we learn time-varying behavior
patterns. These behavior patterns are used as underlying rules for data-driven simulation, for
pedestrian prediction, and can also be combined with other multi-agent simulation algorithms.
Our approach can perform all these computations in tens of milliseconds.

pedestrians, based on the estimated states. These characteristics consist of three com-
ponents that correspond to movement patterns and motion dynamics: the entry point or
starting position of each individual human in the environment, the movement flow used to
estimate its preferred velocity or intermediate goal position, and the local collision avoid-
ance technique. We show that these three components can generate pedestrian movements
that are similar to those observed in the original videos and that they can also be used in
slightly varying environments.

Furthermore, we present algorithms to combine these characteristics with other agent-
based models, which allows us to adapt their movement to a new environment or a new
situation. We also use these movement dynamics to improve long-term pedestrian trajec-
tory prediction (Fig. 1).

We have implemented our approach and evaluated the benefits of pedestrian movement
dynamics on several indoor and outdoor scenarios. The original videos of these scenes
have tens of real-world pedestrians, and we are able to reliably compute pedestrian move-
ment dynamics at interactive rates on a desktop PC. We are able to demonstrate up to
12% improvement in long term pedestrian prediction and about 3.5e-01 seconds feature
computation time improvement for data-driven pedestrian simulation algorithms using
our approach.

For the rest of the paper we use the terms “pedestrian”, “agent”, “real-world agent”
interchangeably indicating a real person in a video. We also use the terms “virtual agent”,
“virtual pedestrian”, and “user-controlled agent” interchangeably indicating a simulated
person.

The rest of the paper is organized as follows. Section 2 provides an overview of re-
lated work in pedestrian movement dynamics, data-driven crowd simulation, and behavior
learning. We introduce the terminology and present our interactive pedestrian dynamics-
learning algorithm in Section 3. In Section 4, we highlight the benefits of our approach for
adaptive data-driven crowd simulation and pedestrian trajectory prediction. We describe
our implementation and highlight the performance on different benchmarks in Section 5.

4 A. Bera · S. Kim · D. Manocha

2 Related Work

In this section, we give a broad survey of related work, including multi-agent simulation,
data-driven crowd movement dynamics, and behavior learning.

2.1 Pedestrian Trajectory Simulation

Some of the commonly used techniques for simulating crowd behaviors and trajectory
computation are based on agent-based models, including rule-based methods, which use
a set of behavioral rules to guide the behavior of each pedestrian [5, 6]. Another group
of algorithms includes force-based methods that model interactions among pedestrians
using attraction or repulsion forces [7], and velocity-based [8, 9] and vision-based ap-
proaches [10], which are useful for collision-free local navigation. Another set of algo-
rithms is based on continuum techniques, which compute fields for pedestrians to follow
based on continuum flows [11] or fluid models [12]. Many extensions and experiments
have also been proposed to understand pedestrian flows [13–15] and density relation-
ships [16, 17].

2.2 Data-driven Crowd Movement Dynamics

Data-driven methods use real-world motion specifications or captured data to generate the
trajectory or behavior of each pedestrian. At a broad level, prior work in data-driven meth-
ods can be classified into offline methods (which involve preprocessing) and interactive
algorithms.

Offline Methods: There is a large body of work in computer graphics and anima-
tion that captures human motion data and performs motion synthesis based on Motion
Patches [18] and extensions that can be used to generate a dense crowd with multiple
interacting human-like characters [19]. These methods can also model close interactions
between pedestrians. Other data-driven methods emphasize generating trajectory-level
behaviors using video data or recorded trajectories. For example, data extracted using
semi-automatic trackers are used to generate group behaviors [20]. The virtual scenes
can be populated by copying and pasting small pieces of real-world crowd data [21] or by
using efficient data structures to represent sequences of motion in a large database for mo-
tion retrieval [22]. A different class of data-driven algorithms uses real-world crowd data
to learn or optimize the motion-model parameters for agent-based simulation algorithms.
This class includes a density-based measure [23], a similarity-based entropy metric [24]
to learn or evaluate parameters from a given scenario; offline optimization methods that
use real-world trajectory data to compute the best parameters for simulated motion mod-
els [25, 26]; and a data-driven framework that analyzes the quality of and anomalies in
crowd simulations by comparing them to given training data [27].

Interactive Methods: There is large body of computer vision literature on realtime
pedestrian tracking from videos, and these can be used to generate 2D agent trajectories
for data-driven simulation [28, 29]. However, current methods are limited to generating
2D trajectories and cannot handle any changes in the environment or simulate different

Modeling Trajectory-level Behaviors using TVPMD 5

trajectory behaviors from those observed in the videos. There is a large body of work on
interactive editing of crowd trajectories and animations [30, 31]. These methods can be
directly used on extracted trajectories or on the full body motion of animated characters
to generate plausible pedestrian movement simulations for different environments.

2.3 Pedestrian Prediction

Prior work in pedestrian prediction [32, 33] makes simple assumptions on pedestrian
movement, such as the use of constant velocity or constant acceleration motion mod-
els. In order to improve the accuracy and deal with medium-to-high density crowds, more
accurate motion models and interaction rules have been used. Bruce et al. [34] and Gong
et al. [35] predict pedestrians’ motions by estimating their destinations. Liao et al. [36]
obtain a Voronoi graph from the environment and predict a pedestrian’s motion along the
edges. Luber et al. [37] track pedestrians using a Kalman filter-based tracker along with
Helbing’s social force model. Mehran et al. [38] apply the social force model to detect
people’s abnormal behaviors from videos. Pellegrini et al. [39] use an energy function
to build up a goal-directed short-term collision-avoidance motion model. Bera et al. [40]
improve pedestrian prediction and tracking accuracy by using reciprocal velocity obsta-
cles and hybrid motion models. Yamaguchi et al. [41] use an agent-based behavioral
model called ATTR and learn additional social and personal properties from the behav-
ioral priors, such as grouping information and destination information, to perform pedes-
trian tracking and prediction. Fulgenzi et al. [42] use a probabilistic velocity-obstacle
approach, combined with the dynamic occupancy grid. This method assumes obstacles
have constant linear velocity.

2.4 Video-Based Crowd Analysis

There is extensive work in computer vision, multimedia, and robotics that analyzes the
behavior and movement patterns in crowd videos, as surveyed in [43, 44], where the
main objectives include human behavior understanding and recognition and crowd activ-
ity recognition for detecting abnormal behaviors [45, 46]. Many of these methods use a
large number of training videos to learn the patterns offline [47,48]. Other methods utilize
motion models to learn crowd behaviors [49, 50] or machine learning methods [51, 52].
In contrast, our goal is to develop improved techniques for interactive data-driven crowd
simulation.

3 Time-Varying Pedestrian Movement Dynamics

In this section, we present our interactive algorithm that learns time-varying pedestrian
dynamics from real-world, 2D pedestrian trajectories. We assume that these trajectories
are extracted from observations using standard tracking algorithms.

6 A. Bera · S. Kim · D. Manocha

3.1 Pedestrian State

We first define specific terminology used in the paper. We use the term pedestrian to refer
to independent individuals or agents in the crowd. We use the notion of state to specify
the trajectory and behavior characteristics of each pedestrian. The components used to
define a state govern the fidelity and realism of the resulting crowd simulation. Because
the input to our algorithm consists of 2D position trajectories, our state vector consists
of the information that describes the pedestrian’s movements on a 2D plane. We use the
symbol x ∈ R6 to refer to a pedestrian’s state:

x = [p vc vpre f]T, (1)

where p is the pedestrian’s position, vc is its current velocity, and vpre f is the preferred
velocity on a 2D plane. The preferred velocity is the optimal velocity that a pedestrian
would take to achieve its intermediate goal if there were no other pedestrians or obstacles
in the scene. In practice, vpre f tends to be different from vc for a given pedestrian. We
use the symbol S to denote the current state of the environment, which corresponds to
the states of all other pedestrians and the current positions of the obstacles in the scene.
The state of the crowd, which consists of individual pedestrians, is a union of the set
of each pedestrian’s state X =

⋃
i xi, where subscript i denotes the ith pedestrian. Our

state formulation does not include any full body or gesture information. Moreover, we do
not explicitly model or capture pairwise interactions between pedestrians. However, the
difference between vpre f and vc provides partial information about the local interactions
between a pedestrian and the rest of the environment.

3.2 Pedestrian Movement Dynamics

Pedestrian dynamics consist of those factors that govern pedestrians’ trajectory behaviors,
i.e., the factors that change the state of the pedestrians. We model pedestrian dynamics
using three components: starting position or entry point, movement flow, and the local
collision-free navigation rule. Formally, we represent the characteristics of these dynam-
ics for each pedestrian with a vector-valued function, f (), with an initial value determined
by the function, E():

xt+1 = f (t,xt) = [P(xt) I(xt) G(t,xt)]T; x0 = E(t0). (2)

For each pedestrian in the crowd, the function G : R×R6×S→ R2 maps time t, current
state of the pedestrian x ∈ X, and current state of the simulation environment S ∈ S to a
preferred velocity vpre f . Function I : R6×S→ R2 computes the interactions with other
pedestrians and obstacles in the environment and is used to compute the collision-free
current velocity vc for local navigation. The function P : R2→R2 computes the position,
given vc; E : R→ R2 computes the initial position for time t0, which is the time at which
a particular pedestrian enters the environment. The three components of the pedestrian
dynamics (entry point, movement flow, and local collision-free navigation) can be mapped
to the functions E(), G(), and I(), respectively. We learn E() and G() from the 2D

Modeling Trajectory-level Behaviors using TVPMD 7

trajectory data. The local collision-free navigation rule I() can be chosen by the data-
driven algorithm.

We refer to our interactive method as learning time-varying pedestrian movement dy-
namics (TVPMD). Fig. 1 gives an overview of our approach, including computation of
TVPMD and using that computation for crowd simulation. The input to our method
consists of the trajectories extracted from a sensor. The trajectories are time-series obser-
vations of the positions of each pedestrian in a 2D plane. The output TVPMD consists
of entry point distributions and movement flows learned from the trajectory data. No-
tably, our approach is interactive and operates based on current and recent states; in other
words, it does not require future knowledge of an entire data sequence and does not have
to re-perform offline training steps whenever new real-world pedestrian trajectory data
is acquired or generated. As a result, our approach can effectively capture local and/or
individual variations and the characteristics of time-varying trajectory behaviors. We use
TVPMD for data-driven crowd simulation in Section 4.

3.3 State Estimation

The trajectories extracted from a real-world video tend to be noisy and may have incom-
plete tracks [53]; thus, we use the Bayesian-inference technique to compensate for any
errors and to compute the state of each pedestrian.

At each time-step, the observation of a pedestrian computed by a tracking algorithm
is the position of each pedestrian on a 2D plane, denoted as zt ∈ R2. The observation
function h() provides zt of each pedestrian’s true state x̂t with sensor error r ∈ R2, which
is assumed to follow a zero-mean Gaussian distribution with covariance Σr:

zt = h(x̂t)+ r,r∼ N(0,Σr). (3)

h() can be replaced with any tracking algorithms or synthetic algorithms that provide the
trajectory of each pedestrian.

The state-transition model f () is an approximation of true real-world crowd dynamics
with prediction error q ∈ R6, which is represented as a zero-mean Gaussian distribution
with covariance Σq:

xt+1 = f (xt)+q, q∼ N(0,Σq). (4)

We can use any local navigation algorithm or motion model for function f (), such as so-
cial forces, Boids, or velocity obstacles. The motion model computes the local collision-
free paths for the pedestrians in the scene.

We use an Ensemble Kalman Filter (EnKF) and Expectation Maximization (EM) with
the observation model h() and the state transition model f () to estimate the most likely
state x of each pedestrian. EnKF uses an ensemble of discrete samples assumed to follow
a Gaussian distribution to represent the distribution of the potential states. EnKF is able
to provide state estimation for a non-linear state-transition model. During the prediction
step, EnKF predicts the next state based on the transition model and Σq. When a new
observation is available, Σq is updated based on the difference between the observation
and the prediction, which is used to compute the state of the pedestrian. In addition, we

8 A. Bera · S. Kim · D. Manocha

Figure 2 Pedestrian Movement Dynamics Learning: A one-frame example: (a) input consists of pedes-
trian trajectories (green) from the video; (b) probabilistic distributions of entry points at one
frame computed using the Gaussian Mixture Model (shown as elliptical regions); and (c) move-
ment flows grouped by the characteristics of pedestrian dynamics, in which each grouping is
represented by the same color.

run the EM step to compute the covariance matrix Σq to maximize the likelihood of the
state estimation.

EM for state estimation: Expectation Maximization (EM) is an iterative process that
maximizes the likelihood of the latent variable [54]. The EM process repeats the ψ step,
which computes the expected value for Σq (in our case by using EnKF) and the M step,
which computes the distribution with the computed value Σq during the previous ψ step.
By using EM, the likelihood of the state estimation being accurate to given observation
data can be maximized. It is performed by maximizing the expected log-likelihood (ll) of
covariance matrix Σq:

ψ(ll(Σq)) =−
t−1

∑
t=0

ψ((xt+1− f (xt)T
Σq
−1(xt+1− f (xt)))). (5)

We can estimate this value by finding the average error for each sample in the ensemble
at each timestep for each agent.

3.4 Dynamic Movement Flow Learning

We compute the movement features, which are used as descriptors for local pedestrian
movement. These movement features are grouped together and form a cluster of a move-
ment flow.

Movement Feature The movement features describe the characteristics of the trajec-
tory behavior at a certain position at time frame t. The characteristics include the move-
ment of the agent during the past w frames, which we call the time window, and the
intended direction of the movement (preferred velocity) at this position.

The movement feature vector is represented as a six-dimensional vector:

b = [p vavg vpre f]T , (6)

where p, vavg, and vpre f are each two-dimensional vectors representing the current posi-
tion, average velocity during past w frames, and estimated preferred velocity computed
as part of state estimation, respectively. vavg can be computed from (pt −pt−w.dt)/w.dt,
where dt is the time-step.

Modeling Trajectory-level Behaviors using TVPMD 9

The duration of the time window, w, can be set based on the characteristics of a scene.
Small time windows are good at capturing details in dynamically changing scenes with
many rapid velocity changes, which are caused by some pedestrians moving quickly.
Larger time windows, which tend to smooth out abrupt changes in motion, are more
suitable for scenes that have little change in pedestrians’ movement. For our results, we
used 0.5 to 1 second of frames to set the value of w.

Movement Flow Clustering
At every w steps, we compute new behavior features for each agent in the scene using

Eq. 6. We group similar features (average velocities and preferred velocities) and find K
most common behavior patterns, which we call movement flow clusters. We use recently
observed behavior features to learn the time-varying movement flow.

K-means clustering is an iterative algorithm that first assigns the cluster membership
(i.e., which cluster the points belong to) for each data point, which is the dynamics feature
bi:

Bk = {bi : dist(bi,µk)≤ dist(bi,µl)∀l,1≤ l ≤ K}. (7)

It updates the centroids of each cluster until there is no change in µk:

µk =
1
|Bk| ∑

bi∈Bk

b j. (8)

We use the k-means data clustering algorithm to classify these features into K move-
ment flow clusters. K and N f are user-defined values that represent the total number of
the clusters and the total number of collected behavior features, respectively, and K ≤N f .
A set of movement-flow clusters B = {B1,B2, ...,BK} is computed as follows:

argmin
B

K

∑
k=1

∑
bi∈Bk

dist(bi,µk), (9)

where bi is a movement feature vector, µk is a centroid of each flow cluster, and dist(bi,µk)
is a distance measure between the arguments. In our case, the distance between two fea-
ture vectors is computed as

dist(bi,b j) = c1
∥∥pi−p j

∥∥
+ c2

∥∥∥(pi−vavg
i w dt)− (p j−vavg

j w dt)
∥∥∥

+ c3

∥∥∥(pi +vpre f
i w dt)− (p j−vpre f

j w dt)
∥∥∥ ,

(10)

which corresponds to the weighted sum of the distance among three points: current po-
sitions, previous positions, and estimated future positions (which are extrapolated using
vpre f , c1, c2, and c3 as the weight values). Comparing the distance between the positions
rather than mixing the points and the vectors eliminates the need to normalize or stan-
dardize the data. Each movement-flow cluster contains adjacent features that have similar
average velocities and preferred velocities (see Fig. 2 (c)).

10 A. Bera · S. Kim · D. Manocha

3.5 Entry-Points Learning

Entry points are a component of pedestrian dynamics we want to learn to estimate when
real pedestrians enter the scene. These starting positions and timings for each agent are
very important and govern their overall trajectory. We use a multivariate Gaussian mixture
model to learn the time-varying distribution of entry points, which will be used as the
initial position x0 for a newly added pedestrian in a data-driven crowd simulation. We
define E() as the function that provides a position sampled from the learned distributions.
For a non-spherical distribution, a Gaussian distribution is preferred; the distribution of
entry points, which are scattered near the scene’s boundary and often correspond to long
elliptical regions, is frequently non-spherical (see Fig. 2 (b)).

We assume that the distribution of entry points, e, from which the function E() sam-
ples, is a mixture of J components and that each of the components is a multivariate
Gaussian distribution of a two-dimensional random variable, p, with a set of parameters
Θ = (α1, · · · ,αJ,θ1, · · · ,θJ):

e(p|Θ) =
J

∑
j=1

α je j(p|µ j,θ j), (11)

e j(p;θ j) =
1

2η |Σ j|1/2 exp(−1
2
(p−µ j)

T
Σ
−1
j (p−µ j)). (12)

Each component e j is a Gaussian distribution given by the parameters θ j =(µ j,Σ j), where
µ j is the mean of the component j and Σ j is a 2× 2 covariance matrix. α j is a mixture
weight, which is the probability of a point p that belongs to the component j. α j ∈
[0,1] for all i and the sum of α js are constrained to 1 (1 = ∑

J
j=1 α j). From an initial

guess of the parameters θ j, we perform EM to learn these parameters θ j = (µ j,Σ j) from
the given entry points collected from the real pedestrian trajectories. The entry point
distribution is updated whenever we have a new observation of a pedestrian entering near
the boundary of the scene (i.e., the starting positions of a trajectory). We use only the
recent Ne observations of entry positions from trajectories and discard old observations.
A large value for Ne can capture the global distribution of entry points, whereas a smaller
value for Ne can better capture the dynamic changes of the distribution. Although we
update the model frequently, we can exploit the locality in distributions because the new
distribution is evolving from the previous distribution. We use the previous parameters
and choose cluster j, which satisfies argmin j ||p− µ j||, as our initial guess for the new
distributions.

EM for Gaussian Mixture Model (GMM): The E step updates the membership weights
α j for all components, and the M step uses the updated membership weights and data to
update these parameters. E and M steps are iteratively processed until the log-likelihood
(ll(Θ)) of the mixture model converges:

ll(Θ) =
L

∑
l=1

loge(z0
l |Θ) =

L

∑
l=1

(log
J

∑
j=1

)αkek(z0
j |θ j), (13)

Modeling Trajectory-level Behaviors using TVPMD 11

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Cluster 1
Cluster 2

Figure 3 Synthetic data points are sampled from g1 and g2 with varying weights for each frame. Red
dots are points sampled from g1 and blue dots are points sampled from g2. x and y axes refer to
the respective x and y co-ordinates in the image space.

where L is the number of observation points, which corresponds to a set of observed entry
points Z0 = z0

j | j ∈ R.

3.6 GMM for Entry Point Learning

In Sec. 3, we discussed the time window w used for TVPMD learning. We can leverage
the range of local prediction based on the value of the time window w. As w gets larger,
the estimation captures more global characteristics of the data. In this section, we present
results from an experiment conducted with synthetic data to highlight the comparisons
between local and global estimation.

In our experiment, synthetic data is generated from two multivariate Gaussian distri-
butions, g1 and g2: f (x) = (η)g1(x) + (1− η)g2(x), where g1 = N(µ1,Σ1) and g2 =
N(µ2,Σ2).

We sample 20 points for each frame (10 total frames) while decreasing the value of η

gradually from 0.8 to 0.2. The sampled points are shown in Fig. 3.
We use GMM+EM to learn the parameters µ j, Σ j, and η . We compare three cases.

The first case learns a mixture model using all the points. This model may best describe
the global distribution observed during all the frames. The second case learns a mixture
model using all past data. For example, at frame t, the model takes into account all points
generated from frame 1 to frame t. The final case uses time window w= 3. In other words,
the mixture model is learned from the local data sampled from three recent frames. We re-
fer to these models as global, accumulative, and local methods, respectively. Fig. 4 shows
the comparisons between these methods. The figure shows the approximated η and 1−η

12 A. Bera · S. Kim · D. Manocha

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Cluster 1 (estimation of g1)

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Cluster 2 (estimation of g2)

Figure 4 Estimated weight of cluster1 (g1) and cluster2 (g2) during ten frames. Ground truth (black),
global (red), accumulative (green), and local (blue) the where x-axis refers to the time-step (sec)
and y-axis refers to the weight. The global model does not perform as well as the accumulative
or local model, when the data changes over time. Accumulative model gradually converge to
global result. Local model generates noisy approximation due to smaller number of samples,
but generally gives good approximation to the ground truth distribution.

for g1 and g2, respectively. As shown in the figure, the global model does not perform as
well as the accumulative or local models when data changes over time. The accumulative
model gradually converges to the global result. The local model generates noisy approx-
imation due to a smaller number of samples, but generally gives good approximation of
ground truth data.

Performance improvement:
In Sec. 3.5, we discussed how we use the previous parameters as an initial guess for

updating the distributions. When we update the entry point estimation with new observa-
tions, we can use previously learned distributions (i.e., entry point distributions at t−w
frame) as priors. For example, we can assign each new data point x to the closest cluster
j: argmin j||x− µ j||. Since entry points tend to have similar distributions and previously
observed entry points are stored during the time window, having such prior information
provides very good estimation for the model and also improves the performance. From
our experiment, the average number of iterations for EM has reduced more than 3 times
when we use the prior compared to random initialization.

4 Applications

In this section, we use our TVPMD algorithm for data-driven crowd simulation and im-
proved long-term pedestrian prediction.

Modeling Trajectory-level Behaviors using TVPMD 13

(a) Original Video (b) Without TVPMD (c) With TVPMD

Figure 5 Manko Benchmark: We highlight the benefits of entry point and movement flow learning.
(a) A frame from a Manko video, which shows different flows corresponding to lane forma-
tion (shown with white arrows); (b) and (c) We compute collision-free trajectories of 18 virtual
pedestrians (shown in green) along with the extracted trajectories of 42 real pedestrians (shown
in red) from the Manko scenario. For (b), we use random entry points (dashed yellow circles) for
virtual pedestrians and goal positions on the opposite side of the street. White circles highlight
the virtual pedestrians who are following the same movement flow as neighboring real pedestri-
ans. For (c), we use TVPMD (entry point distribution and movement flow learning) to generate
virtual pedestrians’ movements. The virtual agents follow the lane formation, as observed in the
original video.

4.1 Data-driven Crowd Simulation

The first part of this section gives details of our algorithm used to compute TVPMD. In
the second part, we use TVPMD to compute the state of the virtual crowd based on local
collision avoidance and situational trajectory adaption methods. For a detailed discussion
of data-driven crowd simulation, we refer our readers to [55].

4.1.1 Asymmetric behavior

The TVPMD computation allows user interaction with the agents in the scene by adding
obstacles during the simulation. Furthermore, our method can be extended to allow users
to directly control any pedestrian in the scene. In this case, we need to model the asym-
metric behavior for the user-controlled pedestrian.

Asymmetric behavior modeling of agents has been studied and different modeling
techniques have been proposed based on social forces and reciprocal velocity obstacles
[56–58]. We use a similar approach for modeling collision avoidance between a user-
controlled pedestrian and the rest of the virtual pedestrians in the scene. Currently, we
use a velocity-based local navigation technique called ORCA [8] for local navigation.
It computes the current velocity vc from vpre f and the set of collision-free ORCA con-
straints. This algorithm assumes symmetric behavior, which means that all the pedestri-
ans have equal responsibility for avoiding a collision. However, we impose 100% of the
collision-avoidance responsibility on the user-controlled agent in the simulation when it
has an impending collision with other pedestrians or obstacles.

In this case, the ORCA algorithm can be slightly modified to handle both symmetric

14 A. Bera · S. Kim · D. Manocha

and asymmetric behaviors. Each ORCA constraint is a linear constraint computed using
velocity obstacles. Given two pedestrians, A and O, we compute the minimum vector u of
the change in relative velocity needed to avoid collision. Formally, the ORCA constraint
on A’s velocity induced by O is given as

ORCAA|O = {v|(v− (vA +du)) · û≥ 0}, (14)

where vA is A’s current velocity, û is the normalized vector u, and d is a constant value
that determines the minimum change of the velocity in the direction of û. Normally
when we deal with only virtual pedestrians in a scene, we set d = 1/2. This implies that
each pedestrian shares the responsibility for avoiding collisions equally. When it comes to
collision avoidance with a user-controlled pedestrian, we set d = 1, which means the user-
controlled pedestrian A is solely responsible for collision-free navigation with respect to
the rest of the environment. As result, the user-controlled pedestrian A moves further away
to avoid collision. If A has multiple neighboring pedestrians, each neighboring pedestrian
will result in a separate ORCA constraint while computing the new velocity for A. Local
navigation is performed by computing the new current velocity for A (vc) that is closest
to its preferred velocity (vpre f), while satisfying all ORCA constraints:

vc
A = argmin

v∈ORCAA

‖v−vpre f
A ‖, (15)

where vc and vpre f are the new velocity and preferred velocity, respectively.

4.2 Long-term Pedestrian Prediction

A key aspect in any real-time prediction algorithm is estimating the motion of the pedes-
trian in a crowd. In this section, we give an overview of a real-time algorithm that learns
movement flows from real-world 2D pedestrian trajectories that are extracted from video.
Our approach involves no pre-computation or pre-learning, and can be combined with
any real-time pedestrian trackers. For a detailed discussion of the pedestrian prediction
approach, we refer our readers to [59].

Fig. 6 gives an overview of our approach, including computation of movement flows
and their use in pedestrian prediction. The input to our method consists of a live or stream-
ing crowd video. We extract the initial set of trajectories using an online particle-filter
based pedestrian tracker. These trajectories are time-series observations of the positions
of each pedestrian in the crowd. The various components used in our algorithm are shown
in the figure and explained below. The output is the predicted state of each agent that is
based on learning the local and global pedestrian motion patterns (Figure 7). For more
details and results we point the readers to [59].

5 Results

In this section, we describe the implementation of our method and highlight its perfor-
mance on different scenarios. Our system runs at interactive rates on a desktop ma-
chine with a 3.4 GHz Intel i7 processor and 8GB RAM. For state estimation, we use

Modeling Trajectory-level Behaviors using TVPMD 15

Figure 6 Pedestrian Prediction: We highlight various components of our real pedestrian path prediction
algorithm. Our approach computes the movement flow from realtime 2D trajectory data and
uses it to improve prediction accuracy.

Figure 7 Pedestrian Prediction Results: We demonstrate the improved accuracy of our pedestrian path
prediction algorithm using TVPMD over prior real-time prediction algorithms (BRVO, Const
Vel) and compare them with the ground truth (in yellow). We observe upto 12% improvement
in accuracy.

velocity-based reasoning as the state transition model, f (). For collision-avoidance com-
putation, we use a publicly available library [8], and we use different real pedestrian
tracking datasets corresponding to indoor and outdoor environments as the input for the
TVPMD computation algorithm. These datasets are generated using manual tracking, an
online multiple-person tracker, a KLT tracker, synthetic data, and 3D range sensor track-
ing [23, 51, 60]. Tab. 2 presents more details on these datasets along with the number of
tracked pedestrians and the number of virtual pedestrians in the data-driven simulation.
Our algorithms compute collision-free trajectories for the virtual pedestrians.

The TVPMD is able to capture the movement patterns and motion dynamics from
the extracted trajectories. We have demonstrated the benefit of our pedestrian dynamics
learning algorithm on several challenging benchmarks, including structured and unstruc-
tured benchmarks. Furthermore, we demonstrate its benefits on different scenarios: ro-
bust to noisy and varying sensor data (ATC Mall and Train Station scenarios), interactive
computations (Black Friday Shopping Mall scenario), handling structured environments
(Marathon scenario), adapting to a situation (Explosion scenario), and high-density sim-
ulation (Train Station scenario).

We have also applied it to the 2D trajectories generated from different crowd videos
and compared the prediction accuracy with the ground truth data, that was also generated

16 A. Bera · S. Kim · D. Manocha

ConstVelocity Kalman Filter BRVO TVPMD-based ApproachDataset Challenges Density # Tracked
1 sec 5 secs 1 sec 5 secs 1 sec 5 secs 1 sec 5 secs

Students BV, IC, PO Medium 65 65.0% 58.2% 66.9% 61.0% 69.1% 63.6% 72.2% 66.8%
Campus BV, IC, PO Medium 78 62.4% 57.1% 63.5% 59.0% 66.4% 59.1% 69.6% 59.5%
seq hotel IC, PO Low 390 74.7% 67.8% 76.7% 68.3% 76.9% 69.2% 79.5% 70.1%
Street IC, PO Low 34 78.1% 70.9% 78.9% 71.0% 81.4% 71.2% 83.8% 72.7%

Table 1 Crowd Scene Benchmarks: We highlight many attributes of these crowd videos, including den-
sity and the number of tracked pedestrians. We use the following abbreviations for some char-
acteristics of the underlying scene: Background Variations (BV), Partial Occlusion (PO), and
Illumination Changes (IC). We highlight the results for short-term prediction (1 sec) and long-
term prediction (5 sec). We notice that our TVMPD algorithm results in higher accuracy for
long-term prediction and dense scenarios. For more details and results we point the readers to
[59].

(a) (b)

Figure 8 (a) A frame from a video of pedestrians (From Figure 2) in a street with extracted trajecto-
ries (shown in red); (b) Our simulation algorithm computes collision-free trajectories of virtual
pedestrians (shown in blue) in the 3D virtual environment, which have the same movement flows
as extracted trajectories (red).

using a pedestrian tracker. The underlying crowd videos have different pedestrian density
corresponding to low (i.e. less than 1 pedestrian per squared meter) and medium (1-2
pedestrians per squared meter). We highlight the datasets, their crowd characteristics,
and the prediction accuracy of different real-time algorithms for short-term and long-term
prediction in Tab. 1. We include comparisons to constant velocity (ConstVelocity) and a
Kalman filter. Finally, we also compare the accuracy with the Bayesian reciprocal velocity
obstacle (BRVO) algorithm [61] that computes a more individualized motion model for
estimating local movement patterns.

It is important to predict the trajectory over a longer time-horizon. Our approach is
able to perform long-term prediction (5-6 seconds) and exhibits much higher accuracy
than prior methods (see Tab. 1). We notice that our algorithm results in higher accuracy
for long-term prediction and dense scenarios. We use a simple prediction metric to evalu-

Modeling Trajectory-level Behaviors using TVPMD 17

ate the accuracy of both long and short term prediction. The average human stride length
is about 0.8 meters [62]. A prediction is counted as successful when the estimated mean
error between the prediction result and the ground truth value at that time instant is less
than this constant. We define prediction accuracy as the ratio of the number of “success-
ful” predictions and total number of tracked pedestrians in a scene. We use our algorithm
for long and short term prediction across a large number of datasets, highlighted in Tab. 1.

Scenario Sensor # Tracked # Virtual # Static # Input Avg. time Avg. time
Peds. Peds. Obst. Frames TVPMD DDS.

Manko Online Tracking 42 70 0 373 0.075 0.037
Marathon Online Tracking 18 500 33 450 0.040 0.098
Explosion Online Tracking 19 110 0 238 0.030 0.031
Street Manual Tracking 147 167 0 9014 0.012 0.004
Train Station KLT (Tracklets) 200 200-943 37-47 999 0.053 0.005
ATC Mall 3D Range Sensors 50 207 38 7199 0.023 0.022
BlackFriday Synthetic Data 6 271-1000 20-28 109 0.085 0.037
IITF-1 Online Tracking 18 500 33 450 0.041 0.003
IITF-3 Online Tracking 19 110 0 238 0.031 0.027
IITF-5 Online Tracking 18 500 33 450 0.045 0.029
NPLC-1 Online Tracking 19 110 0 238 0.032 0.013
NPLC-3 Online Tracking 18 500 33 450 0.048 0.041
NDLS-2 Online Tracking 19 110 0 238 0.034 0.030

Table 2 Performance of TVPMD on a single core for different scenarios. We highlight the number of
real and virtual pedestrians, the number of static obstacles, the number of frames of extracted
trajectories, and the time (in seconds) spent in different stages of our algorithm. DDS is the
Data-Driven Scene computation time (in seconds), which includes the time for computing the
additional collision avoidance constraints when virtual agents are introduced and other simulation
overheads.

6 Conclusions, Limitations, and Future Work

We present statistical algorithms to learn the characteristics of pedestrian movement from
trajectories extracted from real videos. These characteristics are used to compute collision-
free trajectories of virtual pedestrians whose movement patterns resemble those of pedes-
trians in the original video. Our approach is automatic and interactive and captures the
dynamically changing movement behaviors of real pedestrians. We demonstrate its ap-
plications for many data-driven crowd simulations, where we can easily add hundreds of
virtual pedestrians, generate dense crowds, and change the environment or the situation.
Limitations: The performance of our learning algorithm is governed by the accuracy
of the input trajectories. Current algorithms for automatic pedestrian tracking can only
handle low-to-medium density crowds. Our learning algorithm makes some assumptions
about sensor error and statistical distributions and is only useful for capturing the charac-
teristics of local pedestrian dynamics for each pedestrian, whereas offline learning meth-

18 A. Bera · S. Kim · D. Manocha

ods can compute many global characteristics. We consider only characteristics like move-
ment flows, entry points etc. to compute the trajectories of virtual pedestrians and do not
consider other aspects of pedestrian behaviors or states, full body actions or the interac-
tions among pedestrians. Our approach only computes the trajectories, but we need to
combine our method with techniques that can generate plausible animation and render-
ing. For example, we use out-of-box rendering toolkit which may result in some motion
artifacts. Finally, even though in theory our algorithm can generate very dense simula-
tions, it is limited by the underlying motion model, so only a collision-free movement
without physical interaction is possible since we don’t model other aspects of pedestrian
behaviors or states, full body actions or the interactions among pedestrians.
Future Work: There are many avenues for future work. In addition to overcoming the
limitations of our work, our interactive TVPMD can also be combined with other data-
driven crowd simulation algorithms and offline behavior learning methods. We would like
to combine the pedestrian dynamics characteristics with other techniques that can model
complex crowd behaviors or multi-character motion synthesis techniques [18, 19].

7 Acknowledgements

This work was supported by National Science Foundation award 1305286, ARO contract
W911NF-16-1-0085, and a grant from the Boeing company.

References

[1] Bera, A., Kim, S., Manocha, D.: Realtime anomaly detection using trajectory-level
crowd behavior learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 50–57 (2016)

[2] Wolinski, D., Guy, S., Olivier, A.H., Lin, M., Manocha, D., Pettré, J.: Parameter es-
timation and comparative evaluation of crowd simulations. In: Computer Graphics
Forum, vol. 33, pp. 303–312. The Eurographics Association and Blackwell Publish-
ing Ltd. (2014)

[3] Kim, S., Bera, A., Manocha, D.: Interactive crowd content generation and analysis
using trajectory-level behavior learning. In: Multimedia (ISM), 2015 IEEE Interna-
tional Symposium on, pp. 21–26. IEEE (2015)

[4] Bera, A., Kim, S., Manocha, D.: Online parameter learning for data-driven crowd
simulation and content generation. Computers & Graphics 55, 68–79 (2016)

[5] Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model.
In: SIGGRAPH ’87, pp. 25–34. ACM, New York, NY, USA (1987).
doi:10.1145/37401.37406

http://dx.doi.org/10.1145/37401.37406

Modeling Trajectory-level Behaviors using TVPMD 19

[6] Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: Symposium on Computer animation, pp. 99–108
(2007)

[7] Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

[8] van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Robotics Research: 14th ISRR (STAR), vol. 70, pp. 3–19 (2011)

[9] Karamouzas, I., Overmars, M.: Simulating and evaluating the local behavior of
small pedestrian groups. IEEE Trans. on Visualization and Computer Graphics
18(3), 394–406 (2012)

[10] Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. ACM Trans. Graph. 29(4), 123:1–123:9 (2010)

[11] Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH
2006, pp. 1160–1168. ACM (2006)

[12] Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd
simulation. ACM Trans. Graph. 28(5), 122:1–122:8 (2009)

[13] Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirec-
tional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech.
2012(02), P02002 (2012)

[14] Burghardt, S., Klingsch, W., Seyfried, A.: Analysis of flow-influencing factors in
mouths of grandstands. In: Pedestrian and Evacuation Dynamics, vol. 4 (2012)

[15] Kretz, T., Grnebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow
through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment p.
P10014 (2006)

[16] Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of
pedestrian movement revisited. J. Stat. Mech. (10) (2005)

[17] Narang, S., Best, A., Curtis, S., Manocha, D.: Generating pedes-
trian trajectories consistent with the fundamental diagram based on physi-
ological and psychological factors. PLoS ONE 10(4), e0117856 (2015).
doi:10.1371/journal.pone.0117856

[18] Lee, K.H., Choi, M.G., Lee, J.: Motion patches: Building blocks for virtual envi-
ronments annotated with motion data. ACM Trans. Graph. 25(3), 898–906 (2006).
doi:10.1145/1141911.1141972

[19] Yersin, B., Maı̈m, J., Pettré, J., Thalmann, D.: Crowd patches: populating large-
scale virtual environments for real-time applications. In: Interactive 3D graphics
and games, pp. 207–214 (2009)

http://dx.doi.org/10.1371/journal.pone.0117856
http://dx.doi.org/10.1145/1141911.1141972

20 A. Bera · S. Kim · D. Manocha

[20] Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven
approach to crowd simulation. In: Symposium on Computer Animation, pp. 109–
118 (2007)

[21] Li, Y., Christie, M., Siret, O., Kulpa, R., Pettré, J.: Cloning crowd motions. In: Proc.
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA
’12, pp. 201–210 (2012). URL http://dl.acm.org/citation.cfm?id=
2422356.2422385

[22] Kapadia, M., Chiang, I.k., Thomas, T., Badler, N.I., Kider Jr., J.T.: Effi-
cient motion retrieval in large motion databases. In: Proc. of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games, pp. 19–28 (2013).
doi:10.1145/2448196.2448199

[23] Lerner, A., Fitusi, E., Chrysanthou, Y., Cohen-Or, D.: Fitting behaviors to pedestrian
simulations. In: Symp. on Computer Animation, p. 199208 (2009)

[24] Guy, S.J., van den Berg, J., Liu, W., Lau, R., Lin, M.C., Manocha, D.: A statistical
similarity measure for aggregate crowd dynamics. ACM Trans. Graph. 31(6), 190:1–
190:11 (2012). doi:10.1145/2366145.2366209

[25] Wolinski, D., Guy, S.J., Olivier, A.H., Lin, M.C., Manocha, D., Pettré, J.: Parame-
ter estimation and comparative evaluation of crowd simulations. In: Eurographics
(2014)

[26] Berseth, G., Kapadia, M., Haworth, B., Faloutsos, P.: Steerfit: Automated parameter
fitting for steering algorithms. In: Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation (2014). doi:10.2312/sca.20141129

[27] Charalambous, P., Karamouzas, I., Guy, S.J., Chrysanthou, Y.: A data-driven frame-
work for visual crowd analysis. Computer Graphics Forum 33(7), 41–50 (2014).
doi:10.1111/cgf.12472

[28] Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: ECCV, pp.
864–877 (2012)

[29] Bera, A., Kim, S., Manocha, D.: Efficient trajectory extraction and parameter learn-
ing for data-driven crowd simulation. In: Proceedings of Graphics Interface (2015)

[30] Jordao, K., Pettré, J., Christie, M., Cani, M.P.: Crowd Sculpting: A space-time
sculpting method for populating virtual environments. Computer Graphics Forum
33(2), 351–360 (2014). doi:10.1111/cgf.12316

[31] Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans.
Graph. 27(3), 80:1–80:8 (2008). doi:10.1145/1360612.1360679

http://dl.acm.org/citation.cfm?id=2422356.2422385
http://dl.acm.org/citation.cfm?id=2422356.2422385
http://dx.doi.org/10.1145/2448196.2448199
http://dx.doi.org/10.1145/2366145.2366209
http://dx.doi.org/10.2312/sca.20141129
http://dx.doi.org/10.1111/cgf.12472
http://dx.doi.org/10.1111/cgf.12316
http://dx.doi.org/10.1145/1360612.1360679

Modeling Trajectory-level Behaviors using TVPMD 21

[32] Cui, J., Zha, H., Zhao, H., Shibasaki, R.: Tracking multiple people using laser and
vision. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2116–2121. IEEE (2005)

[33] Kratz, L., Nishino, K.: Tracking pedestrians using local spatio-temporal motion
patterns in extremely crowded scenes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on (99), 11 (2011)

[34] Bruce, A., Gordon, G.: Better motion prediction for people-tracking. In: Proc. of
the International Conference on Robotics and Automation (ICRA), New Orleans,
USA (2004)

[35] Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for
visual object tracking (2011)

[36] Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: Location
estimation using sparse and noisy sensor data. In: IROS (2003)

[37] Luber, M., Stork, J., Tipaldi, G., Arras, K.: People tracking with human motion
predictions from social forces. In: Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 464–469 (2010)

[38] Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social
force model. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition,CVPR, pp. 935–942 (2009)

[39] Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Mod-
eling social behavior for multi-target tracking. In: ICCV, pp. 261–268 (2009)

[40] Bera, A., Manocha, D.: Reach: Realtime crowd tracking using a hybrid motion
model. ICRA (2015)

[41] Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and
where are you going? In: Proc. of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352 (2011).
doi:10.1109/CVPR.2011.5995468

[42] Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in un-
certain environment combining pvos and occupancy grid. In: Robotics and
Automation, 2007 IEEE International Conference on, pp. 1610–1616 (2007).
doi:10.1109/ROBOT.2007.363554

[43] Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: A
survey. Circuits and Systems for Video Technology, IEEE Transactions on 25(3),
367–386 (2015)

http://dx.doi.org/10.1109/CVPR.2011.5995468
http://dx.doi.org/10.1109/ROBOT.2007.363554

22 A. Bera · S. Kim · D. Manocha

[44] Borges, P., Conci, N., Cavallaro, A.: Video-based human behavior understanding: A
survey. Circuits and Systems for Video Technology, IEEE Transactions on 23(11),
1993–2008 (2013). doi:10.1109/TCSVT.2013.2270402

[45] Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object
motion and behaviors. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 34(3), 334–352 (2004)

[46] Kim, S., Bera, A., Manocha, D.: Interactive crowd content generation and analysis
using trajectory-level behavior learning. Tech. rep., University of North Carolina at
Chapel Hill (2015)

[47] Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for
discovering activity patterns in dynamic scenes. In: Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pp. 3225–3232 (2011).
doi:10.1109/CVPR.2011.5995578

[48] Solmaz, B., Moore, B.E., Shah, M.: Identifying behaviors in crowd scenes using
stability analysis for dynamical systems. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 34(10), 2064–2070 (2012)

[49] Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detec-
tion using social force model. In: Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pp. 935–942 (2009).
doi:10.1109/CVPR.2009.5206641

[50] Pellegrini, S., Gall, J., Sigal, L., Gool, L.: Destination flow for crowd simulation.
In: Computer Vision ECCV 2012. Workshops and Demonstrations, vol. 7585, pp.
162–171 (2012). doi:10.1007/978-3-642-33885-4 17

[51] Zhou, B., Wang, X., Tang, X.: Understanding collective crowd behaviors: Learn-
ing a mixture model of dynamic pedestrian-agents. In: Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2871–2878 (2012).
doi:10.1109/CVPR.2012.6248013

[52] Sun, L., Li, X., Qin, W.: Simulating realistic crowd based on agent tra-
jectories. Computer Animation and Virtual Worlds 24(3-4), 165–172 (2013).
doi:10.1002/cav.1507

[53] Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: Survey and experi-
ments. PAMI pp. 2179–2195 (2009)

[54] McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions (Wiley Series in
Probability and Statistics), 2 edn. Wiley-Interscience (2008)

[55] Kim, S., Bera, A., Best, A., Chabra, R., Manocha, D.: Interactive and adaptive data-
driven crowd simulation. In: IEEE Virtual Reality (VR), pp. 29–38. IEEE (2016)

http://dx.doi.org/10.1109/TCSVT.2013.2270402
http://dx.doi.org/10.1109/CVPR.2011.5995578
http://dx.doi.org/10.1109/CVPR.2009.5206641
http://dx.doi.org/10.1007/978-3-642-33885-4_17
http://dx.doi.org/10.1109/CVPR.2012.6248013
http://dx.doi.org/10.1002/cav.1507

Modeling Trajectory-level Behaviors using TVPMD 23

[56] Curtis, S., Manocha, D.: Pedestrian simulation using geometric reasoning in veloc-
ity space (in PEDS, 2012)

[57] Kim, S., Guy, S.J., Liu, W., Lau, R.W., Lin, M.C., Manocha, D.: Predicting pedes-
trian trajectories using velocity-space reasoning. In: WAFR (2012)

[58] Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by ex-
ample. Computer Graphics Forum 26(3), 655–664 (2007).
doi:10.1111/j.1467-8659.2007.01089.x

[59] Bera, A., Kim, S., Randhavane, T., Pratapa, S., Manocha, D.: Glmp-realtime pedes-
trian path prediction using global and local movement patterns. ICRA (2016)

[60] Brscic, D., Kanda, T., Ikeda, T., Miyashita, T.: Person position and body direc-
tion tracking in large public spaces using 3d range sensors. IEEE Transactions on
Human-Machine Systems 43(6), 522–534 (2013)

[61] Kim, S., Guy, S.J., Liu, W., Wilkie, D., Lau, R.W., Lin, M.C., Manocha, D.: Brvo:
Predicting pedestrian trajectories using velocity-space reasoning. The International
Journal of Robotics Research p. 0278364914555543 (2014)

[62] Reynolds, T.R.: Stride length and its determinants in humans, early hominids, pri-
mates, and mammals. American Journal of Physical Anthropology (1987)

http://dx.doi.org/10.1111/j.1467-8659.2007.01089.x

	Introduction
	Related Work
	Pedestrian Trajectory Simulation
	Data-driven Crowd Movement Dynamics
	Pedestrian Prediction
	Video-Based Crowd Analysis

	Time-Varying Pedestrian Movement Dynamics
	Pedestrian State
	Pedestrian Movement Dynamics
	State Estimation
	Dynamic Movement Flow Learning
	Entry-Points Learning
	GMM for Entry Point Learning

	Applications
	Data-driven Crowd Simulation
	Asymmetric behavior

	Long-term Pedestrian Prediction

	Results
	Conclusions, Limitations, and Future Work
	Acknowledgements

