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Abstract We have introduced evolutionary game dynamics to a one-dimensional cellular-
automaton to investigate evolution and maintenance of cooperative avoiding behavior of
self-driven particles in bidirectional flow. In our model, there are two kinds of particles,
which are right-going particles and left-going particles. They often face opponent par-
ticles, so that they swerve to the right or left stochastically in order to avoid conflicts.
The particles reinforce their preferences of the swerving direction after their successful
avoidance. The preference is also weakened by memory-loss effect.

Result of our simulation indicates that cooperative avoiding behavior is achieved, i.e.,
swerving directions of the particles are unified, when the density of particles is close to 1/2
and the memory-loss rate is small. Furthermore, when the right-going particles occupy the
majority of the system, we observe that their flow increases when the number of left-going
particles, which prevent the smooth movement of right-going particles, becomes large. It
is also investigated that the critical memory-loss rate of the cooperative avoiding behavior
strongly depends on the size of the system. Small system can prolong the cooperative
avoiding behavior in wider range of memory-loss rate than large system.

Keywords Evolutionary game dynamics · cellular automata · bidirectional flow ·
self-driven particles

1. Introduction

Coordination game is a class of games in game theory where Nash equilibria are achieved
when the players choose the same strategy. It is applied to study the choice of technolog-
ical standards [1], tax compliance [2], and trading behavior [3].

We see coordination-game-like phenomena in pedestrian dynamics, which has been
vigorously studied in these two decades [4–8]. Collision avoidance by swerving in bidi-
rectional flow, which has been investigated both theoretically [9–12] and experimentally
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Figure 1 Schematic view of collision avoidance by swerving in bidirectional flow.

[13–15] is a representative example. When a right-going pedestrian face to a left-going
pedestrian as in Fig. 1, he/she has to avoid the opponent by swerving to the right or left.
If the swerving directions of the two pedestrians do not agree, they need to adjust their
strategy (right or left) by trial and error. Thus, the unification of the swerving directions
of pedestrians smooths bidirectional flow and has a positive effect as the choice of tech-
nological standards.

This correspondence between coordination game and collision avoidance reminds us
that we need to consider frequency of interaction among pedestrians when we study the
cooperative avoiding behavior in pedestrian dynamics. Walking side of pedestrians is not
strictly determined as that of vehicles, and it is presumable to consider that pedestrians
learn appropriate swerving direction in their living culture and society. Thus, frequency
of interaction (chance for learning swerving direction) is an important factor for the uni-
fication of the swerving directions.

Besides, original game theory does not include spatial effect. Recently, evolutionary
coordination game has been studied on networks [3,16]; however, players in such models
stay at the nodes and do not move in the space, in other words the nodes represent the
players. In the real world, players, such as pedestrians, move by their selves and interact
with each other.

With the two motivations above, we develop a new model by combining a one-dimensional
cellular automaton and evolutionary game dynamics in order to investigate evolutionary
game dynamics with moving particles on a lattice. Particles in the model have memo-
ries of their preferred swerving directions, which are updated by interaction with other
particles and memory-loss effect. Jam in the lattice deprives the particles of interactions
with others; therefore, the spatial effect on the frequency of interaction is also studied.
Although we obtain the motivation of this research from bidirectional flow in pedestrian
dynamics, elucidation of evolutionary coordination-game dynamics on a lattice is the
main goal in this paper.

The remainder of this paper is organized as follows. In the next section, our model
is introduced in detail. In Sec. 3, we study how the density and memory-loss rate affect
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Figure 2 Schematic view of the model. (A) The black particle cannot move since its target cell is occupied
by the other particle moving in the same direction. (B) The black particle moves to the vacant
right cell. (C) The white particle moves to the vacant left cell. (D) and (E) Interaction between
the black and white particles occurs.

the cooperative avoiding behavior when the number of right-going and left-going parti-
cles are same. Subsequently, we consider the case where the number of right-going and
left-going particles are different in Sec. 4. It is shown that increase of opponent particles,
which seems to disrupt the smooth movement, improves the flow. In Sec. 5, we investi-
gate how the size of the system affect the condition of the cooperative avoiding behavior
by simulation and approximate analysis. The final section is devoted to summary and
conclusion.

2. Model

A schematic view of our model is depicted in Fig. 2. We consider one-dimensional dis-
crete space with periodic boundary condition. The size of the system, i.e., the number of
cell in the system, is L. Time is also discrete in the model.

There are two kinds of particles, which are right-going (black) and left-going (white)
particles. The number of the right-going and left-going particles are NR and NL, respec-
tively. Similarly, the density of the right-going and left-going particles are ρR = NR/L
and ρL = NL/L, respectively. The total number of the particles is N = NR +NL.

Every discrete time step, first, all the right-going particles are updated in parallel, and
then, all the left going particles are updated in parallel. Each right-going (left-going)
particle moves to the right (left) for one cell if their target cell is vacant (Fig. 2 case (B)
and (C)). It cannot move if their target cell is occupied by the particles moving in the same
direction (Fig. 2 case (A)).

When the right-going and left-going particles exchange their position as in Fig. 2 case
(D), they try to avoid each other by swerving to the right or left with the probabilities pi or
1− pi, respectively (Fig. 3), where pi is the right-swerving probability of the particle i ∈
[1,N]. If the swerving directions of the two particles agree with the probability pi p j+(1−
pi)(1− p j) (i, j ∈ [1,N], i 6= j), they avoid a conflict and exchange their position (Fig. 3
case (A), (B)). In contrast, when the swerving directions disagree with the probability
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Figure 3 Schematic view of avoidance and conflict when the two particles try to exchange their cell. (A)
Avoidance achieved by right swerving. (B) Avoidance achieved by left swerving. (C) and (D)
Conflict.
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Figure 4 Schematic view of avoidance and conflict when the two particles move to the same cell. (A)
Avoidance achieved by right swerving. (B) Avoidance achieved by left swerving. (C) and (D)
Conflict.

pi(1− p j)+ p j(1− pi), a conflict occurs and they remain at their cell (Fig. 3 case (C),
(D)).

In the case where the right-going and left-going particles are trying move to the same
cell as in Fig. 2 case (E), first, the right-going particle moves one cell due to the updating
order. Then, the left-going particle tries to penetrate into the cell occupied by the right-
going particle. The similar rule used in case (D) is exploited to judge avoidance and
conflict. The details are summarized in Fig. 4. Note that the advantage of the updating
order for the right-going particles does contribute to the differences between the results
of right-going and left-going particles when the simulated time steps is short; however,
if we perform a simulation long enough and consider average values, the differences are
neglected.

Now we introduce evolutionary game dynamics to the model. Each particle has pref-
erence of right-swerving and left-swerving, which are described with PR

i ∈ R≥0 and
PL

i ∈ R≥0, respectively. Note that the superscripts R and L represent right swerving and
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left swerving, respectively, in the following. The right-swerving probability, which is
introduced in the previous paragraph is represented by the Logit model [17] with theses
preferences:

pi(t) =
exp
(
PR

i (t)
)

exp
(
PR

i (t)
)
+ exp

(
PL

i (t)
) . (1)

The preferences are updated every time steps by the following equation 1 :

PX
i (t +1) = (1−φ)PX

i (t)+SX
i (t), (2)

where X ∈ {R,L}, φ ∈ (0,1] is the memory-loss rate, and SX
i (t) is the payoff for the

particle i at the time step t. The payoff SR = 1 when the particles succeed in avoiding
conflict by swerving to the right (Case (A) in Fig. 3 and 4). Similarly, SL = 1 when the
particles succeed in avoiding conflict by swerving to the left (Case (B) in Fig. 3 and 4).
In the other cases, SR = SL = 0.

Therefore, if the particles often interact with the opponent particles and succeed in
avoiding, their preferences increase. By contrast, if they fail to avoid the opponent parti-
cles, their preferences do not increase. Furthermore, when there are few interaction, the
preferences decrease due to the memory-loss rate φ .

3. Symmetric case

Here, we consider the case where the same number of right-going and left-going particles
are moving in the system, i.e., ρR = ρL(≡ ρ). We control the density of the particles ρ

and the memory-loss rate φ , and investigate the two quantities.
The first one is the unified ratio defined as follows:

U =

∣∣∣∣∑N
i=1 2(pi−1/2)

N

∣∣∣∣ ∈ [0,1]. (3)

U ≈ 1 implies that the unified phase is achieved, i.e., most of the particles swerve to
the same direction when they face their opponent particles. On the other hand, U ≈ 0
indicates that the disordered phase is attained, i.e., most of the particles do not have their
preferred swerving direction, in other words, they swerve to the right and left with the
equal probability 1/2.

The other is the flow of the particles. The flow of right-going (left-going) particles is
the average number of right-going (left-going) particles that move in one time step divided
by L. We describe the flows of right-going particles, left-going particles, and their sum as
JR, JL ∈ [0,0.5] and J ∈ [0,1], respectively.

We set the length of the system as L = 50 and the initial preferences PR
i (0) = 100,

PL
i (0) = 0. Simulation has been conducted for 110000 time steps, and the results from

t = 10001 to 110000 are used to calculate the average unified ratio and flow. Note that the
stationary state is achieved at t = 10001.

1 Upper bound on the preferences PR
i (t) and PL

i (t) become 1/φ in our model.
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Figure 5 (Left) Average unified ratio Ū as a function of the density ρ(= ρR = ρL) and memory-loss rate
φ . We see two clear phases, which are the disordered phase (upper blue region) and the unified
phase (lower red region). (Right) Average total flow J̄ as a function of the density ρ(= ρR = ρL)
and memory-loss rate φ . We see that high flow is achieved in the unified phase in the left figure.
The parameters are set as L = 50, PR

i (0) = 100, PL
i (0) = 0, and the data from t = 10001 to

110000 are used to depict the figures.

Fig. 5 (left) shows the average unified ratio Ū as a function of the density ρ and
memory-loss rate φ . We see two phases, which are the disordered (upper blue region)
and unified (lower red region) phases, and phase transition between them. When φ is
large, quick memory-loss prevents the particles from keeping their preferences large, so
that the disordered phase is achieved. Even if the memory-loss rate is small, the disor-
dered phase is observed in the low and high density region. This is because there are few
interactions between particles, which are opportunities to increase the preferences, in the
low and high density cases. In the low density case, there are few particles to interact. In
the high density case, it is difficult to move and interact since the cells are occupied by
the other particles moving in the same direction. If the memory-loss rate is small and the
density is medium, the unified phase is achieved. Many interactions between the particles
reinforce their preference.

Fig. 5 (right) shows the average total flow J̄ as a function of the density ρ and memory-
loss rate φ . We see that J̄ achieves high values in the unified phase, while it becomes
small in the disordered phase.

Cross-section diagrams of Fig. 5 (right) at φ = 0.06 and 0.30 are depicted in Fig. 6.
From Fig. 5 (left), we find that the unified phase is achieved in the most density region for
φ = 0.06, whereas the disordered phase is attained in all the density region for φ = 0.30.
Together with the result of the simulation, the curves, which correspond to the double
of the flow of the totally asymmetric simple exclusion process (TASEP) with the parallel
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Figure 6 Cross-section diagrams of Fig. 5 (right) at φ = 0.06 and 0.30. We see that the flow of the
simulation (φ = 0.06) agrees well with that of the TASEP (q = 1.0) in the most part of the curve
(ρ ≤ 0.8). By contrast, the flow of the simulation (φ = 0.30) agrees well with that of the TASEP
(q = 0.5) in the high density region (ρ ≥ 0.5). The parameters are set as L = 50, PR

i (0) = 100,
PL

i (0) = 0, and the data from t = 10001 to 110000 are used to depict the figures.

update rule [18], are shown in the figure. The explicit formulation is described as

J = 2×
1−
√

1−4qρ(1−ρ)

2
, (4)

where q is the hopping probability of the particles and the number 2 is multiplied because
J is the sum of JR and JL. The higher and lower curves are the flow of the TASEP in the
case q = 1.0 and 0.5, respectively.

The flows in the unified phase (φ = 0.06, ρ ≤ 0.80) are close to the higher curve
and those in the disordered phase (φ = 0.06, ρ ≥ 0.86 and φ = 0.30) are close to the
lower curve. Thus, the probability of successful avoidance in the unified phase and disor-
dered phase (ρ ≥ 0.5) in our model approximately corresponds to the hopping probability
q = 1.0 and 0.5 in the TASEP, respectively. In the disordered phase (ρ ≤ 0.5) both the
movement with the probability 1 (to the vacant cell) and 1/2 (interaction with the opponent
particles) are included, so that the flow is not simply represented by the TASEP.

4. Asymmetric case

Next, we consider asymmetric cases, where the number of right-going and left-going
particles are different. Fig. 7 (left) shows the average unified ratio Ū as a function of
the density of right-going particles ρR and left-going particles ρL. The unified phase is
formed at the center of the figure. When ρR ≈ ρL ≈ 1/2, both particles can move and
have enough chances to interact with opponent particles. By contrast, when ρR and ρL
are greatly different, minor particles have many chances to interact, while major particles
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Figure 7 (Left) Average unified ratio Ū as a function of the density of right going particles ρR and left-
going particles ρL. We observe the unified phase (red region) at the center and the disordered
phase (blue region) in the marginal part. (Right) Average total flow J̄ as a function of the density
of right going particles ρR and left-going particles ρL. Similar to the symmetric case, J̄ achieve
high values in the unified phase. The parameters are set as L = 50, φ = 0.08, and PR

i (0) = 100,
PL

i (0) = 0, and the data from t = 10001 to 110000 are used to depict the figures.

have few chances. Thus, the preferences of major particles decrease due to the memory-
loss effect, and the unified phase is collapsed.

Fig. 7 (right) shows the average total flow J̄ as a function of the density of right going
particles ρR and left-going particles ρL. Similar to the symmetric case, J̄ achieves high
and low values in the unified and disordered phases, respectively.

Fig. 8 shows average flow of right-going particles J̄R as a function of ρL for various ρR.
The flow J̄R changes non-monotonically against the increase of ρL. Firstly, in the case
of ρR = 0.2, J̄R ≈ 0.2 for ρL < 0.5, then J̄R drops due to the large number of opponent
particles for ρL > 0.5. Secondly, in the case of ρR = 0.5, J̄R = 0.5 at ρL = 0.0 because
there is no obstruction by left-going (opponent) particles at all. Then it suddenly drops
by one left-going particle at ρL = 0.02. For right-going particles there are few chances to
interact with left-going particles, so that the disorder phase is achieved. However, more
increase of left-going particles recovers J̄R. Left-going particles do not only obstruct
the movement of right-going particles but also increase chances of interaction for right-
going particles. Therefore, the unified phase is achieved for ρL > 0.3 and J̄R becomes
larger. Finally, we would like to investigate the case of ρR = 0.8. Similar to the case
of ρR = 0.5, J̄R achieves the maximum at ρL = 0.0, drops at ρR = 0.02, and recovers
around ρL ≈ 0.4. The different phenomenon is observed around ρL ≈ 0.7. In the case
of ρR = 0.8, right-going particles cannot move smoothly, so that left-going particles have
to move and increase the number of interaction. Further increase of left-going particles
deprives the mobility from them. As a result, neither right-gong nor left-going particles
smoothly move in order to interact with their opponent particles. Hence, the unified phase
is collapsed and the disordered phase is formed with the second drop of J̄R.
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Figure 8 Average flow of right-going particles J̄R as a function of ρL for ρR = 0.2, 0.5 and 0.8. The
parameters are set as L= 50, φ = 0.08, and PR

i (0) = 100, PL
i (0) = 0, and the data from t = 10001

to 110000 are used to depict the figures.

5. Effect of system size

In this section, we investigate the effect of the system size L on the unified ratio U and
preferences PR and PL. Before showing the result of the simulation, we derive an ap-
proximate theoretical result for comparison. By assuming that the properties of all the
particles are always identical (PR

i = P̂R, PL
i = P̂L, and pi = p̂ for all i) and all the particles

interact at every time step, we deform Eq. 1 and 2 as follows:

p̂(t) =
exp
(
P̂R(t)

)
exp
(
P̂R(t)

)
+ exp

(
P̂L(t)

) , (5)

P̂R(t +1) = (1−φ)P̂R(t)+(p̂(t))2, (6)
P̂L(t +1) = (1−φ)P̂L(t)+(1− p̂(t))2, . (7)

In the stationary state (t→ ∞), these equations are numerically solved.
Fig. 9 (left) shows the average unified ratio Ū as a function of the memory-loss rate φ

for various system sizes L = 2, 6, 50 and 1000 obtained from our simulation. Initial pref-
erences are set as PR

i (0) = 100 and PL
i (0) = 0, thus, the unified phase with right swerving

is tend to be achieved. The black curves represent the approximate results computed with
Eq. 5 - 7. We observe the drop of Ū from Ū = 1 (unified phase) to Ū = 0 (disordered
phase) at the critical memory-loss rate for each L. The critical memory-loss rate becomes
smaller as L increases. Since the dynamics of the model is stochastic, deviation from the
right swerving more likely to occur when the number of particles is large. Left swerving
of one particle hinders the movement of all the particles in the system and decreases the
chances of interaction. As a result, the system becomes the disordered phase. Therefore,
it is difficult to maintain the unified phase in the large system.

Fig. 9 (right) shows the standard deviation of the right swerving probability pi. By com-
paring the left and right figures, we see that the rise of the standard deviation corresponds
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Figure 9 (Left) Average unified ratio Ū as functions of the memory-loss rate φ for various system sizes.
(Right) Standard deviation of the right swerving probability pi as functions of the memory-loss
rate φ for various system sizes. The parameters are set as ρR = ρL = 0.5, PR

i (0) = 100, and
PL

i (0) = 0. Data from t = 10001 to 110000 are used for L = 2, 6, and 50, and those from
t = 2001 to 22000 are used for L = 1000.

to the drop of Ū . Since the approximate theoretical result assume homogeneous proper-
ties of the particles, large standard deviation of pi deteriorate this assumption. Thus, we
see great discrepancy around ρ = 0.2 to 0.5 in the left figure.

In order to elucidate the large standard deviation of pi, we also investigate the aver-
age preferences 〈PR〉 and 〈PL〉 as functions of the memory-loss rate φ for various system
sizes. In Fig. 10, 〈PR〉 and 〈PL〉 for L = 2, 6, 50, and 1000 obtained from our simula-
tion are depicted together with the black curves, which represent the approximate results
computed with Eq. 5 - 7. There is only one black curve for φ > 0.5, while there are two
black curves for φ < 0.5, which represent the larger and smaller preferences, respectively.
Since we set PR

i (0) = 100, and PL
i (0) = 0, the larger and smaller curves correspond to

〈PR〉 and 〈PL〉, respectively.
In Fig. 10 (left, main), we see that all the results of simulation agree well with the

approximate curve when the memory-loss rate φ is small or large. These agreements in-
dicate that all the particles interact every time step and maintain large PR to achieve the
unified phase for small φ . For large φ , all the particles cannot keep PR, so that the disor-
dered phase is attained. In such region 〈PR〉 decrease with power law with the exponent -1
as the interpolated double logarithmic plot shows. In the middle region, we observe great
discrepancy between the results of the simulation and the approximate analysis similar to
the unified ratio. This phenomenon is explained with Fig. 10 (right). We see the rise of
〈PL〉 at the same point as the drop of 〈PR〉. As the memory-loss rate φ increases, cooper-
ative avoidance with left serving is sometimes succeeded in spite of the initial condition
PR

i (0) = 100 and PL
i (0) = 0. Success of the cooperative avoidance with left serving dete-

riorate the unified phase achieved with the right swerving. In the approximate analysis, no
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Figure 10 (Left) Average preference for right swerving 〈PR〉 as functions of the memory-loss rate φ for
various system sizes. (Right) Average preference for left swerving 〈PL〉 as functions of the
memory-loss rate φ for various system sizes. The parameters are set as ρR = ρL = 0.5, PR

i (0) =
100, and PL

i (0) = 0. Data from t = 10001 to 110000 are used for L = 2, 6, and 50, and those
from t = 2001 to 22000 are used for L = 1000.

stochastic effect is introduced, so that both 〈PR〉 and 〈PL〉 gradually changes according to
φ . However, in the model, a little stochastic disturbance is enough to collapse the unified
phase and form the disordered phase. Therefore, Ū and 〈PR〉 in the simulation drop at
much smaller φ than those of the approximate analysis.

6. Summary and Conclusion

In this paper, we have developed a one-dimensional cellular automaton model with two
kinds of particles, which are right and left-going ones. They try to avoid each other by
swerving to the right or left stochastically. Evolutionary game dynamics is introduced in
the model, so that the particles update their preferences of swerving direction by interact-
ing other particles. The effect of memory-loss is also considered.

The result of our simulation indicates that the swerving directions of the particles are
unified (the unified phase is achieved) when the effect of memory-loss is weak and there
are enough interactions between particles to increase the preference of swerving direc-
tion. If the condition in the previous sentence is not satisfied, the serving directions are
not unified (the disordered phase is achieved), in other words, all the particles swerve
to the right and left with the equal probability 1/2. It is also elucidated that the flow is
well approximated by the totally asymmetric simple exclusion process (TASEP) with pe-
riodic boundary condition and the parallel-update rule. The flows in the unified phase and
disordered phase in the high density region correspond to those in the TASEP with the
hopping probability equals to 1 and 1/2, respectively. Furthermore, we investigate that
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the opponent particles work as both obstruction and lubricant. When the density of the
opponent particles is not adequate to the density of the main particles, they just obstruct
the main flow. However, if the density of the opponent particles is adequate, they enhance
unification of the swerving direction and achieve high main flow. The effect of the size
of the system has been also studied. We have clarified that it is difficult to maintain the
unified phase in the large system.

Although the model is too simple to directly apply to the real pedestrian flow, we hope
that indication from our investigation helps us to understand the mechanism of cooperat-
ing avoiding behavior in bidirectional flow.

A. Learning from failure

In our model introduced in Sec. 2, the particles increase their preferences when they
succeed in avoiding conflicts. Here, we would like to consider the particles whose prefer-
ences increase also in the case of failure in avoiding conflicts. In other words, the particles
in this appendix learn from failure.

We generalize the payoff SX
i (t) as in Tab. 1 by introducing the probability of learning

form failure plff. When the particle i swerve to the right and the particle j swerve to the
left, they fail to avoid a conflict. Then the particle i learns from this failure and increases
its preference of left-swerving PL

i by 1 with the probability plff. Similarly, the particle j
increases its preference of right-swerving PR

j by 1 with the probability plff. Note that the
model becomes the original one introduced in Sec. 2 when we set plff = 0.

Fig. 11 shows the average unified ratio Ū and the flow J̄ as functions of the density
ρ(= ρR = ρL) and memory-loss rate φ . Actually, we see no clear difference between
Fig. 5 (plff = 0) and 11 (plff = 1), so that the effect of learning from failure does not
greatly influence on the stationary state of the system. However, the effect of learning
from failure on relaxation process is remained as a future work.

Acknowledgements This work was financially supported by JSPS KAKENHI Grant Numbers
15K17583. The author would like to thank Kenta Yoshikawa for useful discussion.

Swerving direction of i Swerving direction of j SR
i SL

i

R R 1 0

R L 0
1 with plff

0 with 1− plff

L R
1 with plff 0

0 with 1− plff
L L 0 1

Table 1 Value of the payoff for the particle i
(
SX

i
)

as a function of the swerving directions of the particle
i and j. The letters R and L represent right swerving and left swerving, respectively.
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Figure 11 (Left) Average unified ratio Ū as a function of the density ρ(= ρR = ρL) and memory-loss rate
φ . (Right) Average total flow J̄ as a function of the density ρ(= ρR = ρL) and memory-loss
rate φ . The parameters are set as L = 50, PR

i (0) = 100, PL
i (0) = 0, plff = 1, and the data from

t = 10001 to 110000 are used to depict the figures.
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