
Characteristics of Stop and Go Wave in One Dimensional Interrupted Pedestrian Flow Through Narrow Channel
Abstract
Keywords
Full Text:
PDFReferences
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282
Okazaki, S., Matsushita, S.: A study of simulation model for pedestrian movement with evacuation and queuing. In: Smith, R.A., Dickie, J.F. (eds.) International Conference on Engineering for Crowd Safety, pp. 271-280 (1993)
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical review. E, Statistical, nonlinear, and soft matter physics 82 4 Pt 2, 046111 (2010)
Blue, V., Adler, J.: Cellular automata microsimulation of bidirectional pedestrian flows. Transportation Research Record: Journal of the Transportation Research Board 1678, 135-141 (1999). doi:10.3141/1678-17
Bellomo, N., Gibelli, L.: Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds 25(13), 2417-2437 (2015). doi:10.1142/s0218202515400138. Exported from https://app.dimensions.ai on 2019/01/25
Johansson, F.: Microscopic modeling and simulation of pedestrian traffic (2013). (Unpublished Master's thesis), Linkoping University, Sweden
Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment 2005(10), P10002 (2005)
Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems 12(03), 393-405 (2009). doi:10.1142/S0219525909002209
Cao, S., Zhang, J., Salden, D., Ma, J., Shi, C., Zhang, R.: Pedestrian dynamics in single-file movement of crowd with different age compositions. Phys. Rev. E 94, 012312 (2016). doi:10.1103/PhysRevE.94.012312
Jelić, A., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: Fundamental diagrams. Phys. Rev. E 85, 036111 (2012). doi:10.1103/PhysRevE.85.036111
Muir, H.C., Bottomley, D.M., Marrison, C.: Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. The International Journal of Aviation Psychology 6(1), 57-77 (1996). doi:10.1207/s15327108ijap0601_4
Nagai, R., Fukamachi, M., Nagatani, T.: Evacuation of crawlers and walkers from corridor through an exit. Physica A: Statistical Mechanics and its Applications 367(C), 449-460 (2006)
Daamen, W., Hoogendoorn, S.: Capacity of doors during evacuation conditions. Procedia Engineering 3, 53-66 (2010). doi:10.1016/j.proeng.2010.07.007. First International Conference on Evacuation Modeling and Management
Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transportation Science 39(2), 147-159 (2005). doi:10.1287/trsc.1040.0102
Duives, D., Daamen, W., Hoogendoorn, S.: Anticipation behavior upstream of a bottleneck. Transportation Research Procedia 2, 43-50 (2014). doi:10.1016/j.trpro.2014.09.007. The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands
Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment 2006(10), P10014 (2006)
Portz, A., Seyfried, A.: Analyzing stop-and-go waves by experiment and modeling. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 577-586. Springer US, Boston, MA (2011)
Ziemer, V., Seyfried, A., Schadschneider, A.: Congestion dynamics in pedestrian single-file motion. Springer pp. 89-96 (2016). Conference on Traffic and Granular Flow 2015
Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. Journal of Physics A: Mathematical and Theoretical 49(18), 185101 (2016). doi:10.1088/1751-8113/49/18/185101
Seyfried, A., Portz, A., Schadschneider, A.: Phase coexistence in congested states of pedestrian dynamics. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) Cellular Automata, pp. 496-505. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)
Kuang, H., Fan, Y., Li, X., Kong, L.: Asymmetric effect and stop-and-go waves on single-file pedestrian dynamics. Procedia Engineering 31, 1060-1065 (2012). doi:10.1016/j.proeng.2012.01.1142
Tomoeda, A., Yanagisawa, D., Imamura, T., Nishinari, K.: Propagation speed of a starting wave in a queue of pedestrians. Physical review. E, Statistical, nonlinear, and soft matter physics 86, 036113 (2012). doi:10.1103/PhysRevE.86.036113
Koshi, M., Iwasaki, M., Ohkura, I.: Some findings and an overview on vehicular flow characteristics. In: Proceedings of the 8th International Symposium on Transportation, pp. 403-426 (1983)
Gulhare, S., Verma, A., Chakroborty, P.: Comparison of pedestrian data of single file movement collected from controlled pedestrian experiment and from field in mass religious gathering. Collective Dynamics 3, 1-14 (2018). doi:10.17815/CD.2018.16
Virkler, M.R., Elayadath, S.: Pedestrian density characteristics and shockwaves pp. 671-683 (1994). Proceedings of the Second International Symposium on Highway Capacity. Vol. 2. Sydney, N.S.W
Munigety, C.R., Vicraman, V., Mathew, T.V.: Semiautomated tool for extraction of microlevel traffic data from videographic survey. Transportation Research Record 2443(1), 88-95 (2014). doi:10.3141/2443-10
DOI: http://dx.doi.org/10.17815/CD.2018.18
Copyright (c) 2018 H. Gayathri, Siddhartha Gulhare, Ashish Verma

This work is licensed under a Creative Commons Attribution 4.0 International License.