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Abstract Real-life, out-of-laboratory, measurements of pedestrian walking dynamics al-
low extensive and fully-resolved statistical analyses. However, data acquisition in real-life
is subjected to the randomness and heterogeneity that characterizes crowd flows over time.
In a typical real-life location, disparate flow conditions follow one another in random or-
der: for instance, a low density pedestrian co-flow dynamics may suddenly turn into a
high density counter-flow scenario and then back again. Isolating occurrences of similar
flow conditions within the acquired data is a paramount first step in the analyses in order
to avoid spurious statistics and to enable qualitative comparisons.

In this paper we extend our previous investigation on the asymmetric pedestrian dy-
namics on a staircase landing, where we collected a large statistical database of measure-
ments from ad hoc continuous recordings [1]. This contribution has a two-fold aim: first,
method-wise, we discuss an analysis workflow to consider large-scale experimental mea-
surements, suggesting two querying approaches to automatically extract occurrences of
similar flow scenarios out of datasets. These pursue aggregation of similar scenarios on
either a frame or a trajectory basis. Second, we employ these two different perspectives
to further explore asymmetries in the pedestrian dynamics in our measurement site. We
report cross-comparisons of statistics of pedestrian positions, velocities and accelerations
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vs. flow conditions as well as vs. querying approach.

Keywords Pedestrian dynamics · high statistics measurements · statistical mechanics ·
data analysis

1. Introduction

Experimental investigations of pedestrian dynamics for behavioral insights or predic-
tive model validation saw a rapid proliferation over the last years [2–6]. Fine-scale
data collections via pedestrian tracking have been growing in complexity and acquisition
scales [7–9], both in [10, 11] and out [6, 12, 13] of controlled laboratory environments.

Laboratory experiments enable detailed parametric studies of the crowd flow (see,
e.g., [14]), and may employ visual markers, such as colored shirts and/or helmets, to en-
hance automatic pedestrian detection and tracking [9]. Real-life condition measurements,
recently tackled via, e.g., wireless sensors [15] or, as here, via 3D sensors [10, 12, 13],
likely eliminate potential behavioral biases introduced by a laboratory environment, such
as the awareness of being part of a scientific experiment. Furthermore, measurements
in real-life enable and are necessary if one aims at resolved statistical descriptions of
physical observables (e.g., positions, velocities, accelerations) or to quantify related rare
events [16, 17]. In this case, large amount of data are required, and they can be ob-
tained via accumulating measurements with continuous and long-time ranged experimen-
tal campaigns [8,12]. From the technical point of view, real-life measurements present the
challenge for computer vision to identify pedestrians automatically (see e.g. [18] for an
overview on color image based pedestrian detection techniques, or the previous references
for the usage of 3D sensors).

As a significant difference from laboratory settings, where experiments are design
defining, geometry [7, 10], but also age [19], competitiveness [20] of participants and so
on, real-life measurements are subjected to the natural uncontrollability and unpredictabil-
ity of pedestrian flows. In fact, real-life measurements unavoidably include heterogeneous
scenarios (cf. sketch in Fig. 1): for instance, in a train station during the rush hour, a low
density pedestrian flow can suddenly turn into a dense crowd [16, 21]. Similarly, individ-
uals walking undisturbed can alternate with group dynamics [22]. Real-life crowd data
have been often analyzed regardless of the mixed flow scenarios [8], e.g. to evaluate the
flow statistics globally or to report time-histories. In many occasions, nonetheless, when
aiming at understanding the dynamics, a (possibly implicit) preliminary data screening
is applied to ensure the aggregation and analysis just of occurrences of similar (homoge-
neous) flow conditions. In fact, we expect that pedestrians walking isolated from peers
will exhibit a different dynamics than pedestrians walking in groups [23]. Thus, drawing
statistics of data inclusive of these two heterogeneous flow conditions unavoidably yields
ambiguous statistics. In general, the classification of flow conditions poses a challenge
when working with vast datasets. Conventionally, manual data selection and annotation
has been exclusively employed, e.g. to select groups in [23], to classify walking patterns
in [24], or to isolate people waiting in [25]. Although manual annotation is certainly a
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possibility for processing data acquired in laboratories or in real-life at small scales, it
may become prohibitively time consuming when dealing with extensive real-life record-
ings. Performing these classification operations automatically for pedestrian dynamics
analysis is, to the best of our knowledge, an open problem.
The first goal of this work is to discuss the analysis workflow when dealing with large
scale, widely heterogeneous, measurement ensembles and to suggest strategies for au-
tomatized selection and aggregation (queries according to the established database termi-
nology) of homogeneous sub-sets of data.

This work is developed in reference to specific extensive measurements collected by us
in a year-long real-life measurement campaign at Eindhoven University of Technology,
the Netherlands [12]. During this campaign we recorded on a 24/7 schedule pedestrian
trajectories in a landing (intermediate planar area between flights of stairs) with corridor-
like geometry (further details in Sec. 3). Staircases landing are relevant scenarios for
crowd dynamics, yet just partially explored, mainly in the context of evacuation dynam-
ics (see, e.g. [26–29] and references therein). Passage by landings is in fact obliged in case
of evacuations via stairs. Ordinary pedestrian dynamics on a landing is heterogeneous, as
it includes scenarios such as uni- or bi-directional flows with one or several pedestrians.
Furthermore, it is naturally asymmetric due both to cultural preferences for the walking
side [30] and to the fact that individuals are either ascending or descending the neighbor-
ing stair flights (for a reference of pedestrian dynamics on stairs, see, e.g. [26,31]). From
our preliminary overview of the traffic in [1], we expect the dynamics in the corridor to
be driven by two elements: the number of pedestrians in the landing (taken as a surrogate
of the density) and their walking directions.
The second aim of this work is to evaluate the asymmetric pedestrian dynamics in a stair-
case landing, cross-comparing different flow regimes in terms of statistics of pedestrian
position, velocity and acceleration. Relevantly, the two considered driving elements are
insufficient in defining an aggregation strategy for homogeneous flow conditions. With
more clarification provided in Sec. 2, these two driving parameters can be used to aggre-
gate data at the time frame level (for a frame-based query) or at the trajectory level (for a
trajectory-based query). While the first approach appears to be a natural choice privileg-
ing simplicity, the second deems that long-range mutual interactions and memory effects
are expected to influence the dynamics beyond a single frame, steering entire trajectories.
Hence, we also employ selected flow conditions to compare the two querying approaches.

The content of the paper is organized as follows: in Sec. 2 we discuss the experimental
workflow when considering large scale experimental measurements and formally intro-
duce the concepts of frame-based and trajectory-based queries for pedestrian dynamics
datasets. The data analyses of our dataset are the subject of Sec. 3. The opportunity to
compare the querying strategies at work is also taken within the section. A discussion in
Sec. 4 closes the paper.
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Figure 1 Experimental workflow simplified schematics in cases of real-life continuous measurements
(top) and laboratory-like measurements (bottom). In both cases, one aims at (statistical) analyses
and cross-comparisons of measurements at different flow conditions. In a laboratory environ-
ment the control parameters of an experiment (e.g. crowd density, crowd composition, geomet-
ric properties of the environment, etc.) can be set a priori, before recording and analyzing the
data. In real-life measurements, we continuously record alternating heterogeneous dynamics
without dictating the flow conditions (cf. “continuous measurements” panel vs. Fig. 4(b1-d1)),
which are in turn ruled by unbiased individual motivations. We represent schematically mea-
surements with squares, whose color is associated to the control parameters. In case of real-life
measurements an intermediate step of identification and aggregation of instances of similar (ho-
mogeneous) flow conditions (represented with gray arrows) is thus necessary before the data
analyses. In Sec. 2 we discuss automatic procedure for such a step.

2. Aggregation of homogeneous measurements: frame-
and trajectory-based queries

In this section we provide definitions and examples for frame-based and trajectory-based
data queries. First, the aim of a query is to obtain a sub-set of experimental data sat-
isfying given conditions. The measurement data come in the form of frames which are
records of pedestrian positions over time. Considering experiments that took place in
real-life settings, measurements can possibly span over long time periods with very dif-
ferent flow conditions. To systematically investigate the dynamics presented in the data,
one needs to isolate occurrences of similar dynamics according to flow conditions before
applying statistical analyses. The criteria of query should be pedestrian flow features that
are expected to play significant roles in the dynamics. For instance, for the experimental
scenario considered in Fig. 4, the number of pedestrians present in the monitored area
and their walking directions are expected to be the major drivers of the dynamics [1]. No-
tably, conceptually similar queries can be performed at the level of frames or trajectories.
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As discussed in the example below and in the forthcoming analyses, such queries might
yield considerably different datasets (hence physical observations). Thus the precise def-
initions of frame- and trajectory-based queries and comparisons are deemed relevant. In
particular, a frame-based query collects measurements when given conditions are met on
a frame-by-frame basis. On the contrary, a trajectory-based query selects data specify-
ing conditions over entire trajectories, thus going beyond what occurs in single frames.
Therefore, data are retained only if the given condition is verified through the whole tra-
jectory.

In the remaining part of the section we delineate the previous general considerations to
experimental scenarios like narrow corridors, as considered in Fig. 4. In these situations
pedestrian mainly walk in the longitudinal direction joining the two ends of the walkway.
Consistently with the reference introduced in Fig. 4(b2-d2), we identify these two possible
walking directions as left-to-right (2R), i.e., walking from the left end to the right end of
the walkway, and as right-to-left (2L), which is the opposite case (in the following, for
the sake of brevity, the short notation 2L/2R or plain arrows are used).

Considering the number of involved pedestrians per each of the two walking direction
as dominant factor of the dynamics, we list few examples of queries. These also provide
the case studies for the forthcoming sections of the paper:

(Q1) considering all the frames in which one pedestrian appears alone in our corridor
with a given walking direction specifies a frame-based query;

(Q2) generalizing (Q1), we can aggregate all time frames in which a given number of
pedestrians with specified walking directions are in the facility. This is another
frame-based query.

(Q3) case (Q1) query yields frames showing only one pedestrian. Considering the pedes-
trian (P) within a given frame, there are only two, mutually exclusive, cases: (a) P
remains alone in the scene throughout his or her entire trajectory, thus all frames
constituting the trajectory are selected by the query; (b) in a frame that comes earlier
or later in time, P shares the measurement region with one or more other pedestri-
ans. We name a pedestrian in case (a) undisturbed, as he or she does not have
any interaction while walking within our measurement region. Isolating all the tra-
jectories by undisturbed pedestrians (with an assigned walking direction) defines a
trajectory-based query;

(Q4) the simplest avoidance scenario involves exactly two pedestrians (e.g. P3 and P4
in Fig. 2) walking in opposite directions. To ensure that the mutual presence is
the only element influencing the pedestrian, we require that no third pedestrian is
present except for P3 and/or P4 during their time in the landing. Once more, this is
a trajectory-based query as it concerns a property of trajectories of P3 and P4 as a
whole, i.e., no third pedestrian shares any frame in trajectories of P3 and P4.

In the following, when convenient, we will refer to trajectory-based queries and to frame-
based queries respectively through the abbreviations TBQ and FBQ.
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Figure 2 Flow conditions in their graph representations. We associate each pedestrian trajectory to a
graph node, such node carries an annotation of the walking direction (right-to-left/left-to-right,
cf. arrow← /→). We connect with an edge all those pedestrian/nodes that appear together in
at least one time instant (frame) and define an interaction network. The entrance time of each
pedestrian assigns an ordering for the nodes, and the time axis indicates such temporal order. In
the upper panel, P1 identifies a pedestrian walking undisturbed (i.e. appearing alone along the
entire trajectory) left-to-right (2R). P1 is in fact represented by a singleton node with no edges.
Later in time, P2 crosses the facility walking undisturbed too, although going right-to-left (2L).
Finally, P3 and P4 cross the facility. They have opposite walking direction and P3 enters first.
They appear together in at least one time instant (frame), thus we assume that they interacted.
Beside themselves, they do not appear with any other individual. Therefore P3 – P4 constitutes
an stand-alone interaction network. Cases P1, P2, P3, P4 are considered in Sec. 3.3. A more
complex interaction network is reported in the lower panel for pedestrians P5 – P8. P5 enters
first, before leaving he/she shares the landing for at least one time frame with P6. Afterwards,
P6 appears together with both P7 and P8. Trajectory-based queries (TBQ) select data from a
dataset for interaction networks with specified properties on size and walking directions.

2.1. Trajectory-based queries: interpretation and evaluation

As described in the cases (Q3) and (Q4) above, trajectory-based queries consider one
pedestrian’s relations with one another or the lack thereof, where pedestrians are consid-
ered in interaction in case appeared together within our observation window. Therefore
a relationship structure among pedestrians is necessary. We use undirected graphs con-
sisting of nodes and edges between nodes to represent pedestrian relations (we refer, e.g.,
to [32] for an introduction on graphs). To construct the graph, first we associate each dis-
tinct pedestrian to a graph node, including the pedestrian’s direction. Then we connect an
edge between two nodes in case the two pedestrians appear together at least in one time
frame. Analyzing the connected components of such a graph, i.e. those subgraph in which
each node is connected to all others via a path constituted of one or more edges [32], that
we name interaction networks, we can extract from our dataset measurements featuring
homogeneous flow conditions with respect to trajectories.

For instance, pedestrians walking undisturbed are identified by interaction networks
with just one node (e.g. P1 and P2 in Fig. 2). Interaction networks with two nodes
identify scenarios involving exactly two pedestrians (cf. P3 -P4 in Fig. 2). In case opposite
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Figure 3 Ideal break up of a frame-based query (FBQ) for single pedestrians walking left-to-right (case
(Q1) in Sec. 2) considering the different heterogeneous scenarios that make up the query results.
We employ the graph description from Sec. 2.1 to group the contributing scenarios, and we
order them by the size of the interaction network (horizontal axis). Identifying the trajectory
contributing data to the FBQ with a grey node, we have: (A) contributions from pedestrians
actually walking left-to-right undisturbed by other pedestrians. Such data would be selected by
the equivalent TBQ (case (Q3) in Sec. 2); (B) contributions from pedestrians that also appear
(in frames discarded by the current FBQ) with a second individual. The two pedestrians might
walk in counter-flow (top case, as P3-P4 in Fig. 2) or in co-flow (bottom case); (C) contributions
from pedestrians that also appear (only in frames discarded by the current FBQ) with two further
pedestrians. These two pedestrians may themselves or may not appear at the same time. Hence
an edge shall or shall not connect them (thus the dotted edge). The sequence of combinations
can clearly grow indefinitely, within the physical limits of the observed area.

walking directions are further associated to these, avoidance scenarios are identified (as
considered in Sec. 3.3)

Notably, this graph based selection comes at low computational costs as: (i) one pass
of the dataset is sufficient to build the graph; (ii) querying for connected components is a
light operation on modern graph software libraries such as [33]. We can use this graph rep-
resentation to interpret further the difference between frame-based and trajectory-based
queries. As examples, we consider the queries (Q1) and (Q3) in Sec. 2. Following (i) we
isolate all the time frames in which one pedestrian walking in a given direction (e.g. from
the left side of the corridor to the right side) is observed. Measurements possibly from
several trajectory fragments of a pedestrian remain thus aggregated. In Fig. 3 we report a
trajectory-based classification of these trajectory fragments. There, the number of nodes
of the connected components to which each trajectory fragment belongs gives the sorting
criterion. Hence, the query (Q1) includes the entire selection given by (Q3) (connected
components with just one node) plus measurements from pedestrians that in previous or
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future time frames will appear with one, two or more other individuals. The following
observations are due:

• frame-based queries (e.g., (Q1)-(Q2) in Sec. 2) aggregate conditions having similar
load and/or analogous usage patterns of the corridor;

• conversely, trajectory-based queries (e.g., (Q3)-(Q4) in Sec. 2) identify specific
physical scenarios focusing on the involved pedestrians (cf. cases P1 – P4 in Fig. 2).
In general these scenarios appear as ideal references in social-force-like modeling
perspectives [34], where the pedestrian motion is a sum of a desired component in
absence of other individuals (as for P1 or P2), plus additive term considering pair-
wise interactions (as for P3-P4). See Sec. 3.3 for further modeling considerations.

• The expansion in Fig. 3 grows with a super-exponential [35] number of different
graph configurations as the number of considered pedestrians increases. This means
that a graph based description may become impractical to analyze dense crowds,
and frame-based queries may remain the only option. Nevertheless, in those con-
ditions, it seems reasonable that the dynamics is driven by density effects rather
than the exact sequence of co-presences in the scene (graph edges). In other words,
in case of large and highly connected graphs, we expect strong similarities in the
dynamics, independently on the exact structure of the connections.

3. Asymmetric dynamics in a staircase landing

We employ frame- and trajectory-based queries to select and analyze data from our large
scale real-life measurements of pedestrian dynamics in a corridor-shaped landing. For the
sake of completeness we report here a primer of the measurement campaign and we refer
interested readers to [1, 12] for a more detailed overview of the traffic and to [16, 36] for
the techniques employed.

In the one year starting from October 2013 we recorded via an overhead Microsoft
KinectTM 3D-range sensor [37] all pedestrians walking in a landing within the Metaforum
building at Eindhoven University of Technology. The landing connects two staircases in
the configuration presented in Fig. 4(a), where individuals ascend in a clockwise direction
from the ground floor to the first floor of the building. The landing is 5.2m long and 1.2m
wide, and the steps have the same width. Individuals at the ground floor reach the landing
after 18 steps, then they climb 4 further steps arriving at the first floor. Recordings went on
a 24/7 basis and include data from 108 working days. With ad hoc processing techniques
of the KinectTM depth cloud and particle-in-flow type tracking [38, 39], we collected ca.
230,000 time-resolved high-resolution trajectories.

Trajectories span diverse flow scenarios, ranging from pedestrians walking alone, undis-
turbed, to multiple pedestrians sharing the same walking direction, i.e. co-flowing, to
clogged counter-flows, in which both motion directions are present. The statistics anal-
ysis from these flow scenarios is organized in the next subsection as follows: Sec. 3.1
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Figure 4 (a) 3D sketch of the recorded landing and KinectTM recording area. An ideal sample trajectory
(analogous to panel b) from the left end to the right end of the facility (left-to-right, 2R) is re-
ported. The whole area is surrounded by walls, here removed for readability. (b1-d1) Depth
frames acquired in the landing by the KinectTM sensor (background removed). The measured
trajectories are superimposed as solid lines. (b2-d2) Measured trajectories reported within a
sketched top view of the landing. The top view reports also the (x,y) reference system consid-
ered. (b3-d3) interaction network of each condition. (b) One pedestrian walking the landing
undisturbed in left-to-right direction (2R, →). (c) Two pedestrians co-flowing in right-to-left
direction (2L, ←). (d) A frame containing three pedestrians is reported including all the four
trajectories of their interaction network (cf. Fig. 2 P5 – P8).

provides an overview of the scenarios via frame-based queries; focusing on diluted sce-
narios involving one or two pedestrians, Sec. 3.2 compares the dynamics as observable
from frame- and trajectory-based queries discussing the differences. Finally, a thorough
analysis up to the pedestrian “social interaction force” of the asymmetric dynamics of
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←
→ ×0 ×1 ×2 ×3

×0 2,174,676 268,912 7,709
×1 1,631,573 127,362 16,423 370
×2 290,263 24,697 3,443 82
×3 11,993 897 95

Table 1 Total number of frames selected via the frame-based queries in Fig. 5. Data are arranged in
the same double entry fashion as Fig. 5: the number of pedestrians walking in direction left-to-
right (→) increases with the columns, while the number of pedestrians walking right-to-left (←)
increases with the rows.

diluted pedestrian scenarios in the landing is carried out in Sec. 3.3.

3.1. Frame-based overview of the dynamics

The U-shape of the landing influences the dynamics of pedestrians that follow curved
trajectories to reach the staircase at the opposite end of the walkway (cf. trajectories sam-
ples in Fig. 4). While passing by the landing, pedestrians are furthermore moving between
two different floors of the building. According to the direction convection introduced in
Sec. 2, the left-to-right (i.e. 2R) walking direction is to ascend, while the right-to-left (2L)
direction is to descend. Shape and function differences among walking directions allow
the emergence of asymmetries in the dynamics of and within the different flow conditions
(undisturbed pedestrian vs. multiple pedestrians vs. direction. See also our previous
work [1]).

First we give an overview of the dynamics by means of an extensive frame-based query-
ing over all the observed combinations of number of pedestrians and of walking directions
(cf. Sec. 2.1). Curved pedestrian trajectories fall preferentially in narrow curved bands,
that we name preferred position bands. We evaluate such bands by (a) binning the lo-
cal pedestrian position data (x,y) according to the span-wise coordinate x; (b) evaluating
statistics (e.g. percentiles in distributions) on the transversal coordinate y. In Fig. 5, the
bands range from the 15th to 85th percentiles of the local y coordinate value (cf. App. A
for technical details).

We observe that pedestrians walk through the landing maintaining the relative right,
this occurs independently on the specific flow configuration. As the number of co-flowing
pedestrians increases, the width of the preferred position band increases, and, as the num-
ber of counter-flowing pedestrians increases, the preferred position band becomes nar-
rower. As intuition suggests, the widths of preferred position bands in the counter-flow
situation roughly follows the ratio between the numbers of pedestrians in both directions.
Note that the cases with highest load (5 pedestrians in total) are rarely measured, thus the
poorer statistics and the decreased smoothness of the positions bands in Fig. 5. For an
overview of the average walking velocities across these frame-based queries we refer the
readers to Sect. 3 in [1].
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Figure 5 Frame-based analysis of preferred position bands in dependence on the number of pedestrians
per walking direction. Subplots are arranged in a double-entry fashion, with each plot reporting
on a different frame-based query. Each query, written schematically as subplot title, consid-
ers the number of pedestrians walking left-to-right (increasing from 0 to 3 moving rightwards
through the plots), or right-to-left (increasing from 0 to 3 moving downwards through the plots).
For instance, the plot (2×←,1×→) reports on the condition where two pedestrians walk right-
to-left and one walks left-to-right (3 in total). The preferred position bands (i.e. the bands
between the 15-th and 85-th percentiles of the distribution of the y position component at each
x location, cf. App. A for technical details) are reported in cyan and in magenta, respectively
for pedestrians walking right-to-left and for pedestrians walking left-to-right. All the data from
pedestrians walking right-to-left (in this case 2 measurements per frame) contribute to the cyan
band, and analogously for the magenta band (in this case 1 measurement per frame). Pedestrians
conforms to the driving side preference by walking on the relative right side of the corridor, at
least whenever a counter-flow occurs. An increase of co-flowing pedestrians results in an ex-
panded preferred position band in the transversal direction y. Contrarily, an increase of counter-
flowing pedestrians constricts the width of the preferred position band. The total number of
frames selected by each query is reported in Tab. 1.

3.2. Frame- vs. trajectory-based queries of diluted flows

In Sec. 3.1 we aggregated our measurements via frame-based queries showing position
preferences based on the walking direction. As commented in Sec. 2.1, frame-based
queries exchange querying simplicity for physical clarity. When we consider trafficked
dynamics involving many pedestrians, because of the combinatorial explosion of the tra-
jectory graph configurations (cf. Fig. 3), frame-based queries are likely the only option.
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Nevertheless, these queries mix data from heterogeneous physical scenarios. In this sec-
tion we compare the data selected by FBQ and TBQ when considering low density, di-
luted, flow conditions. Specifically, we consider and compare

(F1) the single pedestrian dynamics data selected by either queries, i.e., respectively,
cases (Q1) and (Q3) in Sec. 2;

(F2) the pair counter-flow dynamics data selected by either queries. A FBQ for this
scenario would select all the frames including exactly two pedestrians walking in
opposite direction (as in Fig. 5, subplot “(1×←,1×→)”). Instead, a TBQ would
select interaction networks of size 2 (cf. Sec. 2.1) in which both walking directions
are present (i.e. P3-P4 in Fig. 2).

The following analyses include both bands of preferred position, as in Sec. 3.1, as well as
walking velocity fields.
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Figure 6 Preferred position bands for single pedestrians (cf. (F1) in Sec. 3.2), frame- vs. trajectory-
based query results (cf. App. A for the definition of the position bands). In opposition to
Fig. 5, and for the sake of readability, only the upper and the lower limit (in y) of the bands
are retained. Pedestrians walking right-to-left and left-to-right are reported respectively in panel
(a) and (b). Preferred position bands are in red for trajectory-based queries and in blue for
frame-based queries. The black arrows indicate the displacement from the trajectory- to the
frame-based cases. The black vertical dotted lines indicate the longitudinal center of the landing.
(Measurement counts in Tab. 1 for FBQ and in Tab. 2 for TBQ).

In Fig. 6 we report the bands of preferred positions from frame- and trajectory-based
queries of single pedestrians walking in either direction (i.e., number of people observed
in the facility is one. See cases (Q1) and (Q3) in Sec. 2). Consistently with the subplots
“(1×←,0×→)” and “(0×←,1×→)” in Fig. 5, the preferred position bands are almost
exactly a translation of one another of about 20cm in the y direction. Although the relative
position of the bands conforms with the cultural habit of keeping the driving side (cf.
e.g. [30]), an influence of the landing geometry on the trajectories cannot be excluded.
In fact, the shape of the facility limits the sight on the staircases, hence right-hand side
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2L (←) 2R (→)
frames trajectories frames trajectories

TBQ 1 ped. undist. 801,476 32,791 1,099,129 39,576
TBQ 2 ped. counter-fl. 81,588 2,339 91,545 2,339

Table 2 Total number of frames and of unique trajectories selected by trajectory-based queries of undis-
turbed pedestrians and counter-flowing pairs (cf. (F1)-(F2) in Sec. 3.2). The TBQ of counter-
flowing pairs identifies 2,339 pairs of trajectories, each of which contributes with a possibly dif-
ferent number of frames as for each pair there are instants in which just one of the two pedestrians
is present. Furthermore pedestrians going to the right walk typically slower (cf. Fig. 8(c,d)), thus
the higher frame count (as the acquisition frequency is constant).

positions may help preventing collisions (cf. Fig. 10 and Fig. 13). We note that the bands
from trajectory-based queries are symmetric with respect to the longitudinal axis of the
corridor (x≈−0.1m), while this does not occur in the frame-based queries. In the frame-
based case, the entrance end of the bands expands more to the “upper” side of the corridor
(larger y values), and the exit end expands into the “lower” side of the corridor (smaller y
values).

The difference in the preferred position bands between the two queries comes from
those pedestrians that, although alone in the frames selected by the FBQ, have met and/or
will meet other pedestrians during their walk in the corridor, and these trajectories would
be discarded by the TBQ. We systematically analyze such differences in Fig. 7(a,b), where
we break up the considered FBQ separating data from the contributing scenarios, follow-
ing the discussion in Sec. 2.1 and the expansion in Fig. 3. Frame-based queried data of
single pedestrians contain contributions from

(A) the analogous TBQ (i.e. undisturbed motion with no interactions);

(B) co-flow (B1) and counter-flow (B2) scenarios including two pedestrians (i.e. inter-
actions between exactly two peers);

(C) scenarios with three or more pedestrians (regardless of the appearance order/inter-
actions).

Considering the weight of each scenario reported as the trajectory count in Fig. 7(c,d), we
notice that case (A) is the prominent contributor in the query. In other words, whenever
a pedestrian appears alone in our landing, most likely he or she walked undisturbed the
whole time. This implies the tiny differences between the two query results in Fig. 6. We
notice also that the band enlargement between TBQ and FBQ, determined by cases (B-C),
is mostly contributed by case (B1).

The walking velocity provides a second comparison environment for FBQ and TBQ
of single pedestrian dynamics. Fig. 8 reports the average walking velocity at each space
location within our recording window. Regardless of the query, the walking speed varies
in space, showing contours that are roughly transversal to the curved walking paths. In the
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Figure 7 Contributions from different flow scenarios to the single pedestrian preferred position bands in
Fig. 6. Panels (a,b) report the preferred position bands from FBQ (blue bounding lines) and TBQ
of undisturbed pedestrians (red bounding lines, case (A) in Sec. 3.2), together with the specific
contributions to the FBQ due exclusively to: (B1) pedestrians involved in a co-flow with another
individual; (B2) counter-flow with another individual; (C) all the rest. The weight of each
scenario, sorted by the size of the interaction network (horizontal axis, cf. Fig. 3), is reported in
panels (c,d) in terms of the associated count of trajectories. As in Fig. 3 we truncate the plots at
interaction network size equal to 3. (For computing efficiency reasons the comparisons in these
plots are evaluated considering 3,000,000 measurements out of 5,401,605).
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Figure 8 Average walking speed in space, selecting single pedestrian data via FBQ (a,b) and TBQ (c,d).
Pedestrians walking right-to-left are in panels (a,c), while pedestrians walking left-to-right are
in panels (b,d). Walking velocities measured according to FBQ are lower than in the TBQ case
due to mutual interactions.

first half of the corridor pedestrians arriving from the first staircase go through an acceler-
ation phase, to decelerate in the second half reaching the second staircase. In both cases
we observe a 30% speed variation. The acceleration region measured stretches longer in
span-wise direction than the deceleration region. Furthermore, pedestrians going left-to-
right walk slower than pedestrians going right-to-left. This is consistent with the dynamics
on the staircases themselves, in which, as intuition suggests, descending pedestrians move
faster (e.g. [31]). Beside these similarities, we observe lower speed in FBQ results than
in TBQ results, for both walking directions. Once more, in the FBQ data are included
from pedestrians having a rich interaction network. Presence of further pedestrians (yet
in frames not selected by FBQ) and the related reactions yield speed reductions. Data
selected from TBQ are also significantly less symmetric around the longitudinal axis of
the corridor.

Discrepancies between FBQ and TBQ become substantial when analyzing more com-
plex dynamics scenarios, e.g. the counter-flowing pair case. In Fig. 9 we report a twofold
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Figure 9 Comparison of FBQ and TBQ in the case of pair counter-flow dynamics (cf. (F2) Sec. 3.2) in
terms of preferred position band and walking velocity difference. The blue and red solid lines
report the boundaries of the preferred position bands from respectively FBQ and TBQ cases.
The black arrows identifies the local displacement of the band, which is significantly larger than
in the single pedestrian case ((F1) in Sec. 3.2, cf. Fig. 6). The underlying color maps reports the
difference of the average speed velocities (as TBQ speed minus FBQ speed). The local average
velocity from TBQ is higher almost everywhere. (Measurement counts in Tab. 2).

comparison of FBQ and TBQ including the preferred walking band (as in Fig. 7) and a
point-wise difference of the local walking speed. Preferred walking bands as shown by
FBQ are narrower and well separated. Furthermore their width remain mostly unchanged
across the facility span. On the contrary, bands from TBQ are wider at the entrance side
and constrict along the span. Higher walking speed are furthermore recorded in case of
TBQ almost everywhere in the recordings. These differences follow the querying ap-
proaches, in fact:

(D1) FBQ includes data from pedestrians having possibly complex interaction networks.
Such queries can hence include trajectories whose unselected frames are part e.g.
of counter-flow scenarios with more than two pedestrians. In these conditions the
formation of two neat walking lanes for the two directions is expected (cf. Fig. 5);

(D2) TBQ includes all frames involving the two considered pedestrians. These com-
prise the pre-avoidance maneuver and post-avoidance maneuvers frames (topic of
Sec. 3.3). In the first case pedestrians entering might have not yet seen the other
individual, and in the second case the other individual might have passed by already
and dropped any influence, thus the larger size of the position band;

(D3) the aspects in (D2) impact also on the walking velocity that is on average higher as
less interactions occur.
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3.3. Trajectory-based analysis of pair-wise interactions

In this section we analyze and compare the two diluted pedestrian dynamics cases intro-
duced in Sec. 3.2 via trajectory-based queries. The two scenarios are likely the simplest
as far as the dynamics is concerned: interactions, if any, occur just to avoid one other
pedestrian that always walks in the opposite direction. Moreover, because of the geomet-
ric setting, they feature asymmetries. The analysis employs once more preferred position
bands, velocity fields and also average acceleration fields. Looking at accelerations in
the social-force modeling [34] perspective, we discuss the pair counter-flow avoidance in
terms of “interaction forces”.
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Figure 10 Comparison of undisturbed pedestrian and counter-flowing pair dynamics via TBQ. We re-
port the boundaries of the preferred position bands in the undisturbed (dashed line) and pair
(solid line) cases. The preferred position bands are shifted toward the relative right side of the
corridor in the counter-flowing configuration due to collision avoidance. The underlying map
shows the average velocity fields for the pair case minus average velocity field for undisturbed
pedestrians. The difference is negative almost everywhere, as counter-flowing pedestrians slow
down to ensure avoidance. Panels (a) and (b) report respectively the cases of pedestrians going
right-to-left and left-to-right. (Measurement counts in Tab. 2).

Undisturbed pedestrians, conforming with all other flow conditions considered (Sec. 3.1
for FBQ), show an asymmetric dynamics with a side preference depending on the walk-
ing direction (see Fig. 6, TBQ cases). Furthermore, pedestrians going left-to-right exhibit
higher walking velocities than in the right-to-left case (Fig. 8(c,d)). In both cases, the
velocity field is non uniform in space. Direction-dependent differences increase in case
of avoidance. Walking paths shift to the relative right to avoid collision, and the overlap
between preferred position bands vanishes (see Fig. 10). Interestingly, the symmetry with
respect to the landing longitudinal axis is lost. The displacement of the preferred posi-
tion bands from the undisturbed pedestrian case to the counter-flowing pair case shows
direction-related asymmetries too. Such displacement is on average ca. 40% larger in
the left-to-right case. Furthermore, while for pedestrians going right-to-left the preferred
position band shows an almost rigid displacement of ca. 10cm, in the left-to-right case
the band deforms and its axis moves, on average, of 18cm. (cf. Fig. 10 and Fig. 11(a)). In
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Figure 11 Quantitative comparisons between the single pedestrian undisturbed dynamics and the pair
counter-flow dynamics in terms of position and velocity differences. (a) Displacement in abso-
lute value of the layers of preferred positions from the undisturbed pedestrian case to the two
pedestrians in counter-flow (cf. Fig. 10). We evaluate the transversal displacement of the me-
dian line of the path yx,50 (cf. explanation in App. A). We consider ∆y2L

x,50 = (ycounter-flow,2L
x,50 −

yundisturbed,2L
x,50 ) in the right-to-left case and ∆y2R

x,50 = −(ycounter-flow,2R
x,50 − yundisturbed,2R

x,50 ) in the
left-to-right case. The box-plots report the distributions of ∆y2L

x,50 and of ∆y2R
x,50 across the land-

ing span. The left-to-right pedestrians moved much more to the relative right when sharing
the corridor with another pedestrian coming their way. (b) Comparison of walking speeds for
undisturbed pedestrians and pair pedestrians in counter-flow. We evaluate the average speed at
each span-wise location x, and for every direction we consider the relative difference of such
velocity between undisturbed case (sin) and counter-flow (ctf). The distribution of the relative
difference is reported by the box-plots. Descending (right-to-left) pedestrians walk faster than
left-to-right pedestrian in both undisturbed and counter-flowing situations. Although slowing
down occur in both counter-flowing directions, the effect is more pronounced for the left-to-
right pedestrians (cf. panel c and longitudinal deceleration in Fig. 13(b)). (c) Distribution of
relative speed variation comparing undisturbed pedestrians and counter-flows of two. (a,b,c)
The box-plots limit the first and third quartiles of the distributions, the whiskers identify the 5th

and 95th percentiles. Red line reports the median and red dots the average values. (Measure-
ment counts in Tab. 2).

comparison with undisturbed pedestrians, we observe an asymmetric drop in the walking
speed: the left-to-right pedestrians have a velocity reduction of 18% on average, while the
pedestrians walking right-to-left (and descending the stairs) show almost none. The speed
reduction is more pronounced around the central horizontal axis (y≈ 0m) where there is
a higher chance of collision (cf. field in Fig. 10 and Fig. 11(b,c)). Consistently, higher
walking speed are reached at the relative right hand side of the landing where collisions
are unlikely.

These observations can be further discussed considering acceleration fields and interac-
tion accelerations. Following a social force-like [34] approach, we model the acceleration
of a pedestrian~ap as

~ap =~ap,d +~ap,i, (1)

where ~ap,d denotes the desired component of the acceleration, which in the modeling
community is typically assigned a priori, and~ap,i is the perturbation to~ap,d for avoidance
interaction. Generally~ap,d is modeled as a relaxation force toward a given desired veloc-
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Figure 12 Average acceleration field for undisturbed pedestrians walking in right-to-left direction (cf. P2
in Fig. 2). The curved pedestrian motion following the U-shape of the corridor determines
a centripetal acceleration. We measure an almost central acceleration field pointing to ca.
(x =−0.25,y =−0.10)m. The analogous acceleration field for pedestrians going left-to-right
is omitted.(Measurement counts in Tab. 2).
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Figure 13 Average avoidance acceleration field (cf. Eq. 2) for two pedestrians counter-flowing (case
P3-P4 in Fig. 2). Pedestrians walking in right-to-left and left-to-right directions are reported
respectively in panels (a) and (b). In both cases the fields yield sidesteps on the relative right
and a longitudinal speed reduction in the entering half of the landing. In the preferred walking
band of undisturbed pedestrians (solid line) deceleration is stronger. The dashed line reports
the preferred walking band for the two pedestrians case. (Measurement counts in Tab. 2).
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ity field. To analyze the counter-flow scenario, we assess the term ~ap,i. To this purpose,
we assume that the acceleration of undisturbed pedestrians (from now on ~ap,1) provides
a good approximation, at least on average, to ~ap,d . In other words, we assume that undis-
turbed pedestrian move according to their desired acceleration. Notably, as in our setting
pedestrians follow curved trajectories even when undisturbed, they constatly experience
a centripetal acceleration (cf. Fig. 12 for an example of the average field). We extract the
average interaction acceleration as

〈~ap,i〉= 〈~ap〉−〈~ap,d〉 ≈ 〈~ap〉−〈~ap,1〉, (2)

where 〈~a〉 is a local spatial average of ~a (cf. App. A for technical details). We report the
avoidance acceleration fields for pedestrians going right-to-left and left-to-right in Fig. 13.

As expected, we notice that in both right-to-left and left-to-right cases the interaction
acceleration points toward the relative right yielding the observed relative right drift of
trajectories i.e. the displacement of the preferred position bands (cf. position bands
in Fig. 13). Furthermore, consistent with the asymmetric speed variations shown in
Fig. 11(c), longitudinal decelerations are visible mostly in the left-to-right case, espe-
cially in proximity of the entering side (i.e. the left end of the landing) and around the
axis y≈ 0.

4. Discussion

Long-time measurements of pedestrian dynamics in real-life usually show wide hetero-
geneities containing randomly alternating instances of diverse flow conditions. This as-
pect marks a strong difference with laboratory-based data acquisition campaigns, in which
flow conditions can be precisely defined and changed by the experimenter. In this per-
spective, before any further data analysis, a preparatory data selection step is mandatory
in order to isolate, consistently with parameters expected to drive the flow (i.e. con-
trol parameters) occurrences of similar dynamics. Accidental aggregation of data from
different flow conditions may yield biased statistical measurements potentially compro-
mising the forthcoming physical analyses. Often this selection step has been (completely
or partially) aided by visual assessments. This is a strong limiting factor when aiming at
statistical dynamics analyses, which demand for extensive databases. To the best of our
knowledge, automatizing this data selection step (query) defines an open challenge, for
which we here suggest a tackling strategy. The current effort focuses and analyses the
asymmetric pedestrian dynamics establishing in staircases landings. For this, we consider
two possible querying schemas providing automatic aggregation of measurements based
on expected control parameters and operating either at the frame level or at the trajectory
level. Frame-based queries ensure the satisfaction of control parameters frame-by-frame,
i.e. locally in time, possibly extracting measurements from parts of trajectories. On
the opposite, trajectory-based queries ensure that given flow parameters are maintained
throughout an entire trajectory before retaining it. This reflects the idea that, at least
in a limited domain as the landing analyzed, pedestrian maintain a consistent, non-local
in time and memory-based behavior. In fact, the dynamics of a pedestrian that in one
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time instant appears walking alone might have been perturbed by previous interactions.
In this sense, for instance, a pedestrian cannot be said to feature an “undisturbed” mo-
tion unless he or she walked alone through the entire facility. To represent and perform
trajectory-based queries we suggest a graph-based method. With one pass of the mea-
surement database we build such graph in which interacting pedestrians are connected
within connected components, here named interaction networks. Queries are abstracted
as well in terms of graphs: each query agglomerates data from interaction networks with
the same connectivity. Undisturbed pedestrians are for instance isolated, unconnected,
nodes. Interacting pairs are connected components with two nodes and so on.

We employed the two query schemas to select automatically data for the investigation
of our measurements database, obtained in a year-long experimental campaign. Specif-
ically, we commented on the pedestrian dynamics depending on flow conditions, here
identified through two control parameters: the number of pedestrians and their walking
directions. As shown in Sec. 3.2, the employment of either query schema can make a
significant difference in the data selected and thus in the following analysis. Frame-based
queries have a simple definition and implementation, however they likely produce spuri-
ous data: e.g. the single pedestrians queries contain data from trajectories perturbed by
many peers giving different velocity records. Similarly, the counter-flowing pairs case
shows heavily different preferred position bands that, in the case of frame-based queries,
are more confined as it would follow from many interactions (cf. Fig. 5).

In general, the U-shape of the landing combines with functional differences of walking
directions (pedestrians walking to the left are going to a lower level in the building, the
opposite happens for pedestrians going to the right) and yields asymmetries at the levels of
preferred positions, velocities and also avoidance accelerations (social interaction forces).
The quantitative differences found include, beside higher velocities for pedestrians glob-
ally descending, larger influences to the walking patterns of ascending pedestrians in case
of a counter-flow. Further, we observed a strong walking side preference towards the
driving side. Although it looks reasonable to expect that this asymmetry holds on any
staircase landing, we cannot exclude an influence by the shape of the facility. In princi-
ple, ascending pedestrians, typically walking in the inner side, may have a different sight
range on the environment than individuals descending, yielding lower speed.

A couple of further remarks should be noted from our definition of an interaction net-
work. We introduce connection edges in the pedestrian relation graph after simultaneous
appearance of individuals in our observation window. When employing trajectory-based
queries we assume that interactions among pedestrians are limited to connected compo-
nents of the graphs, i.e. to pedestrians’ interaction networks. In principle, interactions
might happen outside our recording windows and still play a role in the observed dy-
namics. Although this aspect is hard to assess, we expect that because of the limited
extension of the landing it played negligible effects. In other words, we assume that if
two pedestrians interact then, at a point, both appeared altogether in our observation win-
dow. Moreover, the spatial scale of our geometry is certainly relevant. Although it is
reasonable to assume that two pedestrians appearing together in our observation window
play a reciprocal influence on their dynamics, the same would not hold for larger geo-
metrical settings (e.g. spanning beyond typical interaction ranges). In this cases, the sole
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simultaneous appearance does not justify the subsistence of an interaction. Generalizing
the graph structure including geometric distances might help in treating such cases.

A. Preferred position bands, speed and acceleration
fields

We evaluate preferred position bands, speed and acceleration fields via a spatial binning of
the measurements from homogeneous sets obtained by either frame-based or trajectory-
based queries (cf. Sec. 2). Given a homogeneous set of query results every detection d
has the form

d = (t, p,x,y,u,w,ax,ay) (3)

where t is the detection time, p is an unique index for the detected pedestrian, (x,y) is
the position of the pedestrian at time t, ~v = (u,w) his/her velocity, ~a = (ax,ay) his/her
acceleration.

To evaluate the preferred position band we extend the approach suggested in [12]. We
bin the detection set {d} with respect to the longitudinal position x between x = −1m
and x = 0.8m in 40 equal bins. For each bin we consider the distribution of transversal
positions yx (where the x subscript indicates the dependence on the bin), and we take the
15th and 85th percentiles (indicated by yx,15 and yx,85) of the distribution to define the
preferred position band.

We evaluate the displacement of the preferred position bands in Fig. 11(a) by consid-
ering in each bin the 50th percentiles of yx: yx,50. We compute the difference between the
value for pedestrians undisturbed (yundisturbed,2L

x,50 , for the right-to-left case) and walking with

one other individual in opposite direction (ycounter-flow,2L
x,50 ). We consider the distribution of

the quantity obtained (∆y2L
x,50 = (ycounter-flow,2L

x,50 − yundisturbed,2L
x,50 )).

Velocity and acceleration fields are defined after a binning with respect to x and y. For
each bin we take respectively the average speed 〈

√
u2 + v2〉 and the average acceleration

〈~a〉 = (〈ax〉,〈ay〉). For the velocity fields we employed 32 bins in x direction within
[−1.0,0.8]m and 20 bins in y direction within [−1.0,0.5]m. For the acceleration fields
we employed 16 bins in x direction within [−1.0,0.8]m and 7 bins in y direction within
[−0.4,0.4]m.
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[14] Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried,
A.: Evacuation dynamics: Empirical results, modeling and applications. In: En-
cyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer (2009).
doi:10.1007/978-0-387-30440-3 187
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