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Abstract In case of a threat in a public space, the crowd in it should be moved to a
shelter or evacuated without delays. Risk management and evacuation planning in pub-
lic spaces should also consider uncertainties in the traffic patterns of crowd flow. One
way to account for the uncertainties is to make use of safety staff, or guides, that lead
the crowd out of the building according to an evacuation plan. Nevertheless, solving the
minimum time evacuation plan is a computationally demanding problem. In this paper,
we model the evacuating crowd and guides as a multi-agent system with the social force
model. To represent uncertainty, we construct probabilistic scenarios. The evacuation
plan should work well both on average and also for the worst-performing scenarios.
Thus, we formulate the problem as a bi-objective scenario optimization problem, where
the mean and conditional value-at-risk (CVaR) of the evacuation time are objectives. A
solution procedure combining numerical simulation and genetic algorithm is presented.
We apply it to the evacuation of a fictional passenger terminal. In the mean-optimal
solution, guides are assigned to lead the crowd to the nearest exits. In contrast, in the
CVaR-optimal solution, the focus is on solving the worst-case scenario’s physical con-
gestion. With one guide positioned behind each agent group near each exit, a plan that
minimizes both objectives is obtained.
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1 Introduction

In case of a safety threat in a public place, the crowd has to be evacuated fast. There are
many studies where the optimal evacuation routes have been calculated [1]. However,
these theoretical solutions are not accompanied by practical solutions to implement and
enforce these routes. An extreme suggestion is to send the routes to crowd members,
to their cellphones [2]. Nevertheless, it is known that in emergencies, people tend to
follow clear orders and guidance given by authorities, like security staff, and the use of
security staff improves evacuation efficiency [3, 4]. Thus, the coordination of security
staff, or guides, is a more practical problem to solve.

The evacuation time of a crowd is sensitive to changes in conditions, even to devia-
tions in individuals’ positions [5,6]. A working evacuation plan should be robust against
them. Related to this, we recently raised the question in [7]: how should a crowd be
evacuated when there is the possibility that a large part of it deviates from its usual rules
of motion? Here, our objective is to study how the guides should be coordinated so
that the crowd is evacuated in minimum time considering different crowd flow traffic
scenarios. We are also interested in how the evacuation plan changes when the number
of guides varies; e.g., some of them can be needed simultaneously in other operations.
We will present our study in the context of a passenger terminal, even though other
spaces containing a crowd could be used. Passenger terminals are characterized by high
and fluctuating crowd flow, with a wide variety of people with different destinations to
reach [8,9]. Also, they typically have security staff that can respond fast and guides the
evacuation if needed.

When modeling the evacuation of a crowd using guides, it is appropriate to use the
microscopic scale to focus directly on individuals and one-to-one interactions [10]. The
social force model [11] and cellular automaton model [12] are the most well-known
microscopic model types. Here, we use the social force model. In it, a mixture of
socio-psychological and physical forces is assumed to influence an agent’s motion in the
crowd, which is modeled with Newtonian mechanics. When guide agents are added to
the crowd, they also influence the motion of the other agents. In the original, stochastic
version of the model, a Gaussian random force is added to an agent’s equation of motion
to describe intentional or unintentional deviations from the usual rules of motion.

Different aspects of the optimal use of guides in an evacuation have been studied. The
main focus has been on the optimal proportion or number of guides [13–15]. Choosing
the number of guides alone does not guarantee a fast evacuation. If the guides’ routes are
not simultaneously optimized, it can even make the evacuation slower [16]. The studies
are mainly comparative, where different configurations are numerically simulated and
compared. There are only a few studies where mathematical optimization has been used
[7, 17, 18]. On the other hand, the need for rigorous mathematical approaches has been
recognized [1].

In our recent study [7], the number of guides, their initial positions, and exit assign-
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ments needed to minimize the crowd evacuation time is solved in a single optimization
problem. In it, the crowd is modeled with the stochastic social force model to which in-
teraction rules between regular agents and guides are added. The minimum time crowd
evacuation problem is first formulated as a stochastic optimization problem. Then it is
reformulated as a scenario optimization problem and solved with a combined numerical
simulation and genetic algorithm (GA) [7].

In a real-life evacuation, people can participate in various activities that do not imme-
diately get them to the exit, which is a typical concern in evacuation modeling [3]. While
these behavioral deviations could be implemented in the social force model framework,
we assume them to be small compared to the deterministic part of a moving crowd
controlled by guides and approximated with the Gaussian random force term. This ap-
proach does not suffice if a larger part of the crowd behaves differently. Instead, the
different crowd flow traffic patterns could be modeled by changing some of the input
parameters.

Robust optimization [19] or stochastic programming [20] can be used to deal with
the uncertainty of the input parameters. In robust optimization, the input parameters
are defined to belong to an uncertainty set, but no probabilities are assigned. Typically,
a solution that optimizes the worst-case scenario is solved. However, this approach
might result in an overly conservative evacuation plan. On the other hand, in stochas-
tic programming, different input parameters’ realizations are modeled as probabilistic
scenarios. The scenario probabilities in passenger terminals could be obtained from
passenger data or security cameras. Typically, the mean of the objective function is
optimized, which is the mean of the evacuation time over the scenarios. This approach
is appropriate when the optimal evacuation plan works well across all scenarios. The
slowest scenarios can be accounted for by minimizing a risk measure like the condi-
tional value-at-risk (CVaRα ) evacuation time. It gives the conditional mean evacuation
time for the 1−α percentage of the slowest scenarios [21]. Note that in the special
case that the worst-case scenario probability equals or exceeds 1−α , the worst-case
scenario’s evacuation time equals CVaRα evacuation time. This will be the situation in
the toy example of our paper.

Instead of deciding whether the mean or CVaRα is a more appropriate objective func-
tion, the minimum time crowd evacuation problem can be formulated as a bi-objective
problem similar to that in portfolio optimization [21]. Choosing optimal guides’ routes
is essentially a combinatorial optimization problem. Thus usual derivative-based meth-
ods cannot be applied. Instead, a combined numerical simulation and GA approach is
used. The GA iteratively searches for the optimal solutions. At the same time, numeri-
cal simulation evaluates the objective function’s values in different scenarios. A special
kind of GA is needed for bi-objective problems. In this paper, we will use NSGA-II
[22].

In this paper, we model the evacuating crowd of passengers and guides with a deter-
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ministic version of the social force model from [7]. When a guide is within an interac-
tion range from a passenger, it starts to follow the guide. Different crowd flow traffic
patterns are modeled as probabilistic scenarios. Our main contribution is that we for-
mulate a mean-CVaRα crowd evacuation problem with rescue guides. The optimization
variables are the initial positions and exit assignments of guides. Then, we present a
solution procedure combining numerical simulation and NSGA-II.

Our paper is structured as follows. In Sec. 2 the mathematical details of the crowd
movement model are presented. In Sec. 3 we define the optimization model. In Sec. 4
we present the solution procedure and its implementation details. In Sec. 5 we present
the case study of an evacuation of a passenger terminal. The numerical results and their
analysis are presented in Sec. 6. Finally, Sec. 7 is for discussion and conclusion.

2 Evacuation model with guides

Next, we will present the crowd movement model used for the evacuation of a passenger
terminal. The model is the deterministic version of the social force model presented in
[7]. It is essentially Helbing’s original social force model, with a velocity-dependent
social repulsion force. The social force model has been extensively discussed in pre-
vious research. We refer the reader to [7] and its appendix for a detailed mathematical
description of the individual force terms and parameter values used.

Let us start by denoting the index set of passenger agents, or passengers, with N =
{1, ...,n}, the index set of guide agents, or guides, with G = {n+1, ...,n+m}, their
combined index set with I = N ∪G, the building space with Ω ⊂ R2, the exits with
E ⊂ Ω, and the walls with W ⊂ Ω. The points associated with an exit we denote by
ε ⊂ E , so that E = ∪ε . And, the points associated with a wall segment we denote by
w⊂W , so that W = ∪w.

An agent i ∈ I is circle-shaped with radius ri and mass mi. At time t, its center of
mass is xi(t) and its velocity vector is vi(t). Its change of position is then:

dxi

dt
= vi. (1)

Initially, all passengers l ∈ N are heading towards their destination exit εdes
l ∈ E . The

evacuation planner has instructed the guides g ∈ G to move towards the exits εg ∈ E . If
a passenger comes within the interaction range rguide of a guide, the passenger starts to
follow the guide. If the passenger is within the rguide range to two or more guides, it
follows the closest one. Once it has started to follow a guide, it will not start to follow
another. Let us define a binary variable:

ulg(t) =
{

1, if passenger l follows guide g at time t,
0, otherwise, (2)
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for which it initially holds.
The change of velocity at time t for passenger l is given by the equation of motion:

ml
dvl

dt
= (1−∑

g
ulg)f0

l +∑
g

ulgflg +∑
i

fli + ∑
w⊂W

flw. (3)

Here, the term f0
l is the driving force of agent i to move towards its destination exit.

It describes the attempt of agent l to change its actual velocity vl to a desired velocity
v0

l edes
l with a certain characteristic reaction time τ:

f0
l = ml

v0
l edes

l (xl)−vl

τ
. (4)

Here, v0
l is the desired speed of agent l. For simplicity, we assume it to be constant

throughout the evacuation. In position x ∈Ω\
{

εdes
l ∪W

}
, the unit vector edes

l gives the
direction of the shortest path of agent l towards its destination exit εdes

l :

edes
l (x) =−

∇Ddes
l (x)

‖∇Ddes
l (x)‖

. (5)

Here, Ddes
l is the distance map to the destination exit, and it is obtained as a solution to

the continuous shortest path problem:
‖∇Ddes

l (x)‖= 1, if x ∈Ω\
{

εdes
l ∪W

}
,

Ddes
l (x) = 0, if x ∈ εdes

l ,
Ddes

l (x) = ∞, if x ∈W.

(6)

The problem is solved for all exits before the simulation is run. For detailed information
on its numerical computation, see [7, 23].

If the passenger follows a guide, i.e., ∑g ulg = 1, it will instead move towards the
guide’s destination with the driving force,

flg = ml
v0

l eg(xl)−vl

τ
. (7)

Here, the unit vector eg is the direction towards the destination exit of guide g, εg. It is
calculated in the same way as edes

l in Eqs. (5) and (6).
The term fli includes the socio-psychological and physical forces between agents l

and i ∈ I, and similarly, the term flw contains the physical forces between agent i and
wall w ⊂W . These have been extensively discussed in the article [7]; see its appendix
for their exact mathematical expressions.
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On the other hand, the change of velocity at time t for guide g is given by the equation
of motion:

mg
dvg

dt
= f0

g +∑
i

fgi + ∑
w⊂W

fgw. (8)

The term fgi includes the socio-psychological and physical forces between guide g
and agent i ∈ I, and flw contains the physical forces between guide g and wall w ⊂W .
These forces are of the same form as the ones for passengers. Finally, the term f0

g is the
driving force of guide g to move towards its destination exit:

f0
g = ml

v0
geg(xg)−vg

τ
. (9)

3 Optimization framework

We assume that the crowd flow traffic patterns are uncertain. The uncertainty is re-
lated to the destination exits and desired speeds of the passengers, εdes

l and v0
l , respec-

tively. The possible realizations, or scenarios, of the uncertain parameters are denoted
by ϑ k, k ∈ {1, ...,K}. In this section, we define the optimization variables and objective
functions. The notation for risk measures is based on the article [21].

3.1 Probability definitions

Let us denote the evacuation times of the individual agents to get out of the building with
ti, i ∈ I = N∪G. The maximal element of these evacuation times equals the evacuation
time of the crowd, which we denote by Tlast . It is a random variable that depends on the
set of scenarios θ =

{
ϑ 1, ...,ϑ K}. The evacuation time associated with scenario ϑ k is

T k
last . Furthermore, each scenario is associated with a probability pk, ∑k pk = 1.

We are dealing with a finite number of scenarios; hence Eq. (10), the probability
of Tlast being less than or equal to a number ζ ∈ R, is calculated from the discrete
cumulative distribution function, by summing all the probabilities of the scenarios for
which T k

last is less than ζ ,

P
(
Tlast ≤ ζ

)
= ∑

k, T k
last≤ζ

P
(

Tlast = T k
last

)
= ∑

k, T k
last≤ζ

pk. (10)
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One of the objectives for our optimization problem is the mean of Tlast , w.r.t., θ . It is
defined as a mean of a discrete random variable:

E [Tlast |θ ] = ∑
k

pkT k
last . (11)

From here on, we use the notation E [Tlast ] for E [Tlast |θ ].
Next, we denote value-at-risk for probability level α ∈ (0,1) by VaRα . For our prob-

lem, it is the smallest number ζ for which the cumulative probability P
(
Tlast ≤ ζ

)
ex-

ceeds α , and is defined as,

VaRα [Tlast ] := inf
{

ζ ∈ R : P
(
Tlast ≤ ζ

)
≥ α

}
. (12)

We can rewrite Eq. (12) by using Eq. (10):

VaRα [Tlast ] = inf

{
ζ ∈ R : ∑

k, T k
last≤ζ

pk ≥ α

}
. (13)

Now, we can define our second objective, the conditional value-at-risk for probability
level α , CVaRα . It is the conditional mean of Tlast exceeding VaRα , and is defined as,

CVaRα [Tlast ] =E
[
Tlast

∣∣Tlast ≥ VaRα [Tlast ]
]
. (14)

Again, because we have a finite number of scenarios, we can rewrite Eq. (14) as a
probability-weighted sum of those T k

last exceeding VaRα [Tlast ]:

CVaRα [Tlast ] = VaRα [Tlast ]+
1

1−α
∑

k, T k
last≥VaRα [Tlast ]

pk
[
T k

last−VaRα [Tlast ]
]
. (15)

Note that in some situations, especially when there are a small number of scenarios,
the worst-case scenario probability might equal or exceed the tail probability 1−α .
Let us denote the worst-case scenario index by β , the worst-case scenario value, or the
evacuation time associated with it, by WCSV. Thus, it holds

β = argmax
k

T k
last , (16)

and

WCSV [Tlast ] = T β

last . (17)

When the worst-case scenario probability pβ ≥ 1−α , from Eq. (13) we get,

VaRα [Tlast ] = WCSV [Tlast ] , (18)
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and furthermore, by inserting the above into Eq. (15),

CVaRα [Tlast ] = WCSV [Tlast ] . (19)

So, in this situation, we can use the simpler WCSV instead of CVaRα . In the example
problem studied later in this paper, this will be the case.

3.2 Optimization problem

Next, we discretize the space Ω into square grid cells ω , so that Ω ⊂ ∪ω = Ω̄. In
our problem, the number m of guides is fixed. Each guide g ∈ G = {n + 1, ...,n +
m} is associated with an origin grid cell ωg ⊂ Ω̄, and a destination exit εg ⊂ E . The
optimization variables are feasible origin-destination pairs of the guides, i.e., feasible
evacuation plans π := {(ωn+1,εn+1), ...,(ωn+m,εn+m)} , ωg ⊂ Ω̄, εg ⊂ E ,g ∈ G. Let Π

be the set of all such evacuation plans.
The end-point conditions for our problem are the initial and final positions of the

agents. The initial position of a guide g, xg(0) ∈ ωg, is a prespecified point in its cor-
responding origin grid cell ωg. The final position of a guide g, xg(tg) ∈ εg, is any
point in its corresponding destination exit εg. The initial positions of the agents are
xl(0) = x0

l , l ∈N. The agents can evacuate using any of the available exits; thus it holds
for the final positions xl(tl) ∈ E .

We are interested in finding an evacuation plan that optimizes both the mean and
CVaRα of Tlast . Let us first define the following function:

φ(π,θ) := Tlast . (20)

Then we can write our bi-objective optimization problem as

min
π∈Π

{
E [φ(π,θ)] ,CVaRα [φ(π,θ)]

}
;

subject to Eqs. (1), (3), (8); (21)

xl(0) = x0
l , xl(tl) ∈ E , l ∈ N; xg(0) ∈ ωg, xg(tg) ∈ εg, g ∈ G.

Here we are minimizing two objectives at the same time in the sense of Pareto-optimality.
To compare two solutions, we use the concept of dominance. Solution π1 dominates so-
lution π2 iff:

E
[
φ(π1,θ)

]
≤ E

[
φ(π2,θ)

]
, and CVaRα

[
φ(π1,θ)

]
< CVaRα

[
φ(π2,θ)

]
,

or (22)

E
[
φ(π1,θ)

]
< E

[
φ(π2,θ)

]
, and CVaRα

[
φ(π1,θ)

]
≤ CVaRα

[
φ(π2,θ)

]
.
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The set of solutions not dominated by any other solutions is called the set of non-
dominated, or Pareto-optimal, solutions. By definition, they are the solutions to the
problem.

4 Solution method

The bi-objective optimization problem of Eq. (21) is solved with a combined numerical
simulation and genetic algorithm (GA) procedure [24]. The GA searches iteratively for
the nondominated solutions. At the same time, the evacuation simulation evaluates the
objective function values, or fitnesses, of the found solutions and steers the randomized
search process. The procedure ends when a convergence criterion is met. The procedure
is summarized in the flowchart of Fig. 1, and it is explained next step-by-step.

Step 1. In the first iteration, or generation, a random population with Q number of
solutions is created. The solutions are evacuation plans π1, ...πQ. A gene in a solution
contains the origin grid cell and destination exit of a single guide.

Step 2. The evacuation plans are simulated under different scenarios. More specifi-
cally, given an evacuation plan and a scenario ϑ k, the system defined by the constraints
in Eq. (21) is simulated with a numerical integration scheme to obtain T k

last (see, e.g., ap-
pendix of [25] for further details). This is done for all evacuation plans in the population
and all scenarios.

Step 3. The bi-objective fitness value is calculated with the equations from Sec. 3.1.
Step 4. The population solutions are ranked with the Nondominated Sorting Genetic

Algorithm II (NSGA-II) [22]. The solutions are sorted based on dominance (recall
Eq. (22)) to find the set, or front, of nondominated solutions. The first front gets the
nondomination rank 0. The first front’s solutions are then set aside, and the sorting is
repeated to find the next front. The solutions in the next front get the nondomination
rank 1. This procedure is repeated until all solutions have been ranked.

After nondomination ranks have been assigned, a crowding distance is calculated for
each solution [26]. It estimates the density of solutions with the same rank surrounding
a particular solution. For a given solution, it calculates the L1 distance between its
two neighboring solutions in the objective space (see Fig. 2). Solutions with a higher
crowding distance, i.e., are located in a less crowded region, are preferred. This is
because solutions located close to each other, in the sense of objective functions’ values,
are likely to have evacuation plans close to each other. There should be diversity in the
solutions that the GA does not get stuck in a local optimum.

Step 5. The offspring solutions are obtained by applying selection, crossover, and
mutation operations on the current generation, or parent, solutions. In selection, we use
the unique fitness tournament selection [26]. In it, a number of solutions with unique
fitness values are sampled. Each sampled solution is paired against one other sampled
solution. In the paired contest, the solution with a lower nondomination rank wins and
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Start

Step 1. Generate initial population randomly.

Step 2. Simulate evacuation plans under different scenarios.

Step 3. Calculate the bi-objective fitness value for the evacuation plans.

Step 4. Perform nondominated sorting (calculate nondomination rank and crowding distance).

Step 5. Apply selection, crossover, and mutation to create offspring population.

Step 6. Repeat Steps 2 and 3 for the offspring population.

Step 7. Repeat Step 4 for the union of the current generation and offspring populations.

Step 8. Choose the next generation population.

Convergence
criterion met?

Step 9. Return nondominated solutions.

Stop

Yes

No

Figure 1 Flowchart of the combined simulation and GA procedure.

is selected to undergo further operations. If the solutions have the same rank, the one
with a higher crowding distance wins the paired contest. This process is repeated until
Q solutions have been selected.

After selection, each selected solution is paired with one other selected solution for
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Mean (s)

C
V

aR
α

(s
)

◦
◦

◦

◦
◦

πq−1

πq

πq+1

•
•

•

•
•
•

•

◦
•

Nondominated solutions

Dominated solutions

Figure 2 The crowding distance of solution πq. It is the L1 distance between its neighboring solutions
πq−1 and πq+1 (the sum of the lengths of the two dashed lines). The horizontal axis gives the
solutions’ mean evacuation time, whereas the vertical axis gives the CVaRα evacuation time.

crossover. We use the single-point crossover operation, where the two parent solutions
create offspring solutions that contain half of the genetic material of both parents. Thus,
the offspring solutions contain half of the guides of each parent’s evacuation plan. The
crossover operator is applied with a certain probability. If it is not applied, the offspring
solutions have the same genetic information as to their parents.

Finally, a mutation operator is applied to the offspring solutions. It is applied sepa-
rately, with a certain probability on each gene. It can either change the origin grid cell
of a guide, its destination exit, or both of them.

Step 6. The bi-objective fitness of the offspring solutions is calculated by repeating
Steps 2 and 3.

Step 7. Step 4 is repeated for the union of the current generation and offspring popu-
lations.

Step 8. For the next-generation population, Q solutions are chosen from the current
generation and offspring populations’ union. The solutions with the lowest nondomina-
tion ranks are chosen. If all the same rank solutions do not fit, those with the highest
crowding distance are prioritized.

Step 9. Return the first nondominated front calculated in Step 7.
After Step 8, we check if a convergence criterion is met. More precisely, to measure

convergence, we use a hypervolume indicator [27]. To calculate its value, we first con-
struct a reference solution. The reference solution is a point in the objective space that
has larger CVaRα and mean evacuation time than any feasible solution. The hypervol-
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Mean (s)

C
V

aR
α

(s
)

Nondominated solutions

◦
◦

◦

◦

•
Reference solution

Figure 3 Hypervolume of a set of nondominated solutions. It is the sum of the rectangular gray areas
defined by the nondominated solutions and the reference solution. The horizontal axis gives
the solutions’ mean evacuation time, whereas the vertical axis gives the CVaRα evacuation
time.

ume indicator is calculated as the sum of the rectangular areas defined by the reference
solution and the first nondominated front from Step 7 (see Fig. 3).

The hypervolume indicator is a measure of the quality of the set of nondominated
solutions. The solutions of a bi-objective optimization problem give the largest hyper-
volume. When the hypervolume indicator has not increased for a predefined number of
generations, we consider the algorithm to have converged. Note that the choice of the
reference solution can affect the convergence of NSGA-II.

5 Case study: evacuation of a passenger terminal

Here, we have in mind a busy passenger interchange terminal. Passengers with different
characteristics are arriving there through one exit and later departing from another. At
such places, common walking areas can get very crowded at times [8, 9]. The changing
crowd conditions make planning an evacuation particularly difficult. The question we
ask is: how should the evacuation planner instruct the safety staff, or guides, to lead
the passengers out of the terminal in case of emergency when accounting for different
scenarios?

More specifically, if the passengers have just arrived, they move to the exits on the
opposite end of a hallway. If they are departing, they move to their nearest exits. Pas-
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sengers move in groups either with regular or slow speed. Slow-moving passengers are
elderly or somehow disabled. Note that crowds usually are heterogeneous. We assume
that the passengers move at the same speed for demonstration purposes.

We create four characteristic scenarios, which are depicted in the schematic diagram
of the fictional interchange terminal in Fig. 4. We assign the probabilities 0.3, 0.2, 0.2
and 0.3 to the scenarios, respectively. Also, we set the probability level α = 0.95 for
the risk measure. Thus, in this example, minimizing CVaRα equals to minimizing the
evacuation time of the worst-case scenario.

(a) Scenarios 2 and 3 (b) Scenarios 1 and 4

Figure 4 A schematic diagram of possible scenarios in a passenger terminal: (a) arriving agents in
Scenario 2 (slow) and Scenario 3 (fast), (b) departing agents in Scenario 1 (slow) and Scenario
4 (fast). The terminal halls are 5 m wide, 85 m long, and the distance from the exit to the
intersection area is 40 m. The exit widths are 1.2 m.

In Scenarios 2 and 3 agents are arriving (see Fig. 4(a)), while in Scenarios 1 and 4 the
agents are departing (see Fig. 4(b)). One can think of Scenarios 2 and 3 representing the
same agents’ movement as in the other two scenarios, but earlier, when they have just
arrived in the terminal. In Scenarios 1 and 2, the agents move slowly, while in Scenarios
3 and 4, they move fast.

In an emergency, like a bomb threat, we assume that passengers will go about their
business unless guided otherwise. Thus, in an unguided evacuation, the evacuation time
of the crowd equals the time for them to reach their destination exits (see Fig. 5). The
evacuation times of Scenarios 2 and 3 are the longest since the arriving agents create
a four-way counterflow at the intersection, which quickly causes a large congestion.
The agents also have a longer walk when they move to the opposite end of the hallway.
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Moreover, in Scenario 2, the agents move slowly, which means that it is noticeably the
slowest of all four scenarios.
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Figure 5 Evacuation time Tlast for different scenarios. A large congestion in the worst-case scenario
(Scenario 2) results in a slow evacuation.

Here our focus is only on how to use guides in an evacuation. We acknowledge that in
reality, for example, loudspeakers could also give information to the passengers. We are
interested in studying the tradeoff between the number of guides used and the crowd’s
evacuation time. Furthermore, we assume guides are instructed for one evacuation plan
by the evacuation planner, and they will use it for all scenarios.

Initially, each passenger agent group is located in the middle of one leg of the ter-
minal. In each of the four groups there are 50 agents. For the circle-shaped passenger
agents l ∈ N, the initial positions x0

l , radii rl and masses ml are fixed for all scenarios.
Before fixing the values, the parameters ml and rl are drawn from a truncated normal
distribution with a cutoff at three times the standard deviation. The mean and standard
deviations are 73.5 kg and 8.0 kg, and 0.255 m and 0.035 m, respectively for ml and
rl . The reaction time is set τ = 0.5 s for all agents. These values are all taken from
the FDS+Evac user manual [28]. In Scenarios 1 and 2, the desired speeds of passen-
gers are v0

l = 0.5 m/s, whereas for Scenarios 3 and 4 they are v0
l = 1.55 m/s. Also, as

stated above, the destination exits εdes
l of passengers vary between scenarios. On the

other hand, for the circle-shaped guide agents g∈G, we set the values of a typical male:
mg = 80 kg, rg = 0.27 m, and v0

g = 1.15 m/s. Also, the interaction range of guide agents
is set to rguide = 10 m. The origin grid cells for guides, ω ∈ Ω̄, are 2 m×2 m.
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6 Numerical results

6.1 Implementation details and performance

We solve the bi-objective optimization problem for the fictional passenger terminal for
1, 2, 3 and 4 guides, with the procedure presented in Fig. 1. Typically, to solve an
optimization problem with a GA, the algorithm parameters are tuned manually in a
problem-specific manner. Here, we extensively tried different algorithm parameters to
assure the most accurate and efficient convergence. We set the GA population size, i.e.,
number of solutions to be evaluated in each generation, or iteration, to Q= 40, crossover
probability to 0.85 and mutation probability to 0.10. We consider the procedure to
have converged when the hypervolume has not increased for 15 consecutive generations.
When calculating the hypervolume (recall Fig. 3), we set 271 s as the objective function
value for the reference solution for both CVaRα and mean evacuation time. The reason
being that, in the unguided evacuation, in Scenario 2, the evacuation time is 271 s, and
we assume the solutions cannot have worse objective function values than that.

The crowd simulation model is implemented in Python code. Some of the code’s core
parts are written as Numba-decorated functions, which translates Python functions to
optimized machine code at runtime. Numba-compiled numerical algorithms in Python
can approach the speeds of C or FORTRAN [29]. The GA is implemented in Bash script
that calls the crowd simulation code written in Python. For reproducibility, all codes are
published [30]. The procedure has been run on the Aalto University high-performance
computing cluster Triton. A single generation of the GA has been run parallel on Triton
using its computing nodes that are Intel Xeon X5650 2.67 GHz with 48 GB or 96 GB
memory, and Xeon E5 2680 v2 2.80 GHz with 64 GB or 256 GB memory.

Simulation of one generation takes a maximum of 10 min. The algorithm converges
in 27, 34, 58 and 32 generations for 1, 2, 3 and 4 guides, respectively. In computation
time, this is approximately 4 h 30 min, 5 h 40 min, 9 h 40 min and 5 h 20 min. It is not
surprising that when we increase the amount of guides, i.e., optimization variables, the
computation time increases. However, with 4 guides, the computation time decreases
again. This could be related to the fact that there is only one Pareto-optimal solution
with 4 guides, as we will see soon.

6.2 Pareto-optimal evacuation plans

Note that the GA is a heuristic rather than an exact solution algorithm. Thus it is ap-
propriate to call the solutions near-optimal instead of optimal. However, for readability,
we drop the prefix near-. We can deduce from the problem setting that if there is no
restriction on the number of guides, the solution would be to take the agent groups to
their nearest exits, which can be done using 4 guides. It results in minimum evacuation
time for all scenarios. The algorithm finds the 4 guide optimum; see Fig. 6. So, we are
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confident that the other obtained solutions are also optimal.

Figure 6 The solution that minimizes both CVaRα and mean evacuation time is obtained with 4 guides.
The red circles represent the guides’ interaction range, and the red arrows their paths to their
destination exits.

The found Pareto-optimal solutions, or Pareto fronts, for the different number of
guides, are all presented in Fig. 7. For 1, 2, and 3 guides, there are multiple solutions,
which means that there is a tradeoff between minimizing CVaRα and mean evacua-
tion time. On each Pareto front, the solution down on the right minimizes CVaRα , and
is called CVaRα -optimal solution. Whereas the solution up on the left minimizes the
mean evacuation time and is thus called the mean-optimal solution. We can see that
the GA only finds a few solutions per Pareto front. There exist more solutions, and if
the algorithm were able to find them, the fronts would look denser. By tuning algo-
rithm parameters, we can obtain more solutions. However, we do not find it necessary,
as we will see below, the CVaRα - and mean-optimal solutions already characterize all
solutions on a Pareto front.

Let us study the optimal evacuation plans for 1,2, and 3 guides more closely. Figs. 8,
9, 10 present schematic diagrams of them. In each figure, the left subfigure represents
the CVaRα -optimal evacuation plan, while the right figure represents the mean-optimal
evacuation plan. The figures depict the initial situation when using these plans. The red
circles describe the guide’s interaction range, and the red arrow describes the path the
guide takes to its destination exit. Along the path, the guide interacts with agents within
the interaction range, and these agents are led to the guide’s destination exit.

Note that the exit assignments are the same both in the CVaRα - and mean-optimal
solutions (see Figs. 8, 9, 10). However, initially, in the mean-optimal solutions, the
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Figure 7 Objective function values for the found Pareto-optimal solutions. The same-colored circles
depict the solutions with the same number of guides. The horizontal axis gives the solutions’
mean evacuation time, whereas the vertical axis gives the CVaRα evacuation time.

(a) (b)

Figure 8 (a) CVaRα -, and (b) mean-optimal evacuation plan with 1 guide.

guides are closer to their assigned exits. As shown above, in Fig. 7, there are multiple
Pareto-optimal solutions for a fixed number of guides. When we monitored the solutions
more closely, we noticed that moving on the Pareto front from the CVaRα - to the mean-
optimal solution, the guides’ initial positions are set closer to their destination exit. The
only exception is the mean-optimal solution in Fig. 10(b), where the upper guide is
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(a) (b)

Figure 9 (a) CVaRα -, and (b) mean-optimal evacuation plan with 2 guides.

(a) (b)

Figure 10 (a) CVaRα -, and (b) mean-optimal evacuation plan with 3 guides.

positioned a little farther away in the mean-optimal solution. This does not matter since
it still influences the upper group of agents.

If we think about the unguided situation, the slowest evacuation occurs in Scenario
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2. In it, agents arrive and head to the exit gates on the opposite end of the hallway,
resulting in a four-way counterflow and large congestion at the intersection. Hence,
the main feature of CVaRα -optimal solutions is to decrease congestion effects at the
intersection. On the other hand, in the most probable Scenarios 1 and 4, the agents head
to the nearest exits even without guides. Thus, in the mean-optimal solutions, guides
are set to lead the agents to the nearest exits.

6.3 Congestion at the intersection

Let us analyze the CVaRα -optimal solutions in the worst-case scenario (Scenario 2).
With 0 guides, the agents move to the exits on the opposite ends of the hallways. At
the intersection, they create a congestion (see Fig. 11(a)). With 1 guide, the guide starts
from the lower hallway and takes a large part of the lower group to Exit 2. On the way, it
encounters the right group and reroutes it to Exit 2. Still, a small part of the lower group,
the left, and the upper group create a congestion at the intersection (see Fig. 11(b)).

With 2 guides, the congestion at the intersection is completely cleared. As with 1
guide, one of the guides starts from the lower hallway and takes a large part of the
lower group to Exit 2. The guide also reroutes the right group to Exit 2. The second
guide starts from the upper hallway and takes the upper group to Exit 0. The guide also
reroutes the right group to Exit 0. The upper and lower groups do not collide since they
move along the walls at the intersection (see Fig. 11(c)).

With 3 guides, we notice the same features as with 2 guides. Also, there is the third
guide positioned in the upper hall. It influences part of the upper group members and
takes them to Exit 3. This results in fewer agents going to Exit 0, which improves the
evacuation slightly (see Fig.11(d)). As we saw in Fig. 6, with 4 guides, the agents are
all taken to their nearest exits.

Another important evacuation performance measure, which is not used as an opti-
mization objective in this paper, is the crowd density. Sometimes the evacuation happens
fast enough, but it still is not safe because the crowd density is high. In our example,
the density gets largest when the crowd is jammed at the intersection. In Fig. 12 the
density of at the intersection is calculated for the same scenario and evacuation plans as
in Fig. 11 using the detailed method presented in [31].

As can be seen, the density does not really exceed 3 agents/m2. In our simulations,
the density actually got the highest in Scenario 3, where the agents run in the same
directions as in Scenario 2 but faster. There, densities of even 5 agents/m2 are observed
at the intersection. Such densities in real-life can be dangerous, as people face the risk of
falling [32]. High crowd densities could be accounted for in our optimization problem,
for example, by adding a penalty if the density exceeds a dangerous level.
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(a) (b)

(c) (d)

Figure 11 Snapshots of the worst-case scenario (Scenario 2) with CVaRα -optimal evacuation plans: (a)
1 guide, (b) 2 guides, (c) 3 guides, and (d) 4 guides. The snapshots are taken 50 s from the
beginning of the evacuation. The guides’ interaction ranges are not drawn in this scheme.
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Figure 12 Density plots of the worst-case scenario (Scenario 2) with CVaRα -optimal evacuation plans:
(a) 0 guides, (b) 1 guide, (c) 2 guides, and (d) 3 guides. The instantaneous densities are
calculated 50 s from the beginning of the evacuation.

6.4 Comparison of evacuation times

In Fig. 13 we see the evacuation times of different scenarios for CVaRα - and mean-
optimal solutions. First, notice that adding guides always decreases evacuation time for
Scenario 2. It is the worst-case scenario, so decreasing its evacuation time improves both
objective function values. For mean-optimal solutions, Scenarios 1 and 4 are unaffected
by an increase in the number of guides. For mean-optimal solutions, the evacuation time
of Scenario 3 is decreased for each added guide.
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Figure 13 Tlast (evacuation time) under different scenarios: (a) CVaRα -optimal solutions, (b) mean-
optimal solutions.

For CVaRα -optimal solutions, the results are not as straightforward as for mean-
optimal solutions. Using only 1 guide worsens the evacuation time of Scenario 3. The
reason being that the guide is slower than the passengers, and it reaches the intersection
when all agents are jammed there, and influences them all to go to Exit 2, and creates
a further jam there. Also, the evacuation times of Scenarios 1 and 4 get worse from
adding guides and are the slowest with 2 guides. With 4 guides, the evacuation times
are again the same as with 0 guides. The reason for this is quite apparent: the agents
evacuate optimally in Scenarios 1 and 4 already without any guides, so adding guides
elsewhere than close to exits will worsen the evacuation time.

When we monitored the simulations closely, we noticed that on a Pareto front, when
moving from the CVaRα - to the mean-optimal solution, the evacuation time of Scenarios
1 and 4 is improved, and the evacuation time of Scenario 2 is worsened. For Scenario
3, the optimum would be a solution that is between the CVaRα -, and mean-optimal
solution on the Pareto front.

6.5 Effect of guides’ parameters

Next, we qualitatively discuss the effect of altering guides’ parameters on the Pareto-
optimal solutions when all other parameters are held constant. The guides’ initial po-
sitions can be altered without worsening the solution as long as the interaction range
reaches the same passenger agents. All other possible ways the guides’ initial positions
and exit assignments can be altered are found by rotating 90, 180, and 270 degrees
clockwise the diagrams depicting near-optimal solutions (Figs. 6, 8-10) and by rotat-
ing 180 degrees around the horizontal, vertical, diagonal and cross-diagonal axes. If
the guides’ initial positions and exit assignments are altered otherwise, the solution gets
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worse.
Increasing guide speed improves the solution, as faster guides can inform more agents

about the optimal evacuation routes. However, it is not their absolute speed that matters,
but the relative speed with respect to passenger agents. In our toy example, with faster
guides, the CVaRα -optimal evacuation plans (Figs. 8(a), 9(a), and 10(a)) would be op-
timal for both Scenarios 2 (slow passenger agents) and 3 (fast passenger agents). Now
they are only optimal for Scenario 2. In a more sophisticated model, guide speed could
also be included as an optimization variable. In a practical implementation, it might be
better for the evacuation planner to instruct the guides to finish their route within a time
limit rather than making the guides walk at a certain speed.

The guides’ interaction range can be thought to be a part of the guiding strategy, e.g.,
which passenger agents do the guide command to follow him. Increasing the interaction
range has mixed effects. Generally, for the near-optimal solutions, it worsens them. On
the other hand, if the interaction range is decreased, the evacuation can still be as fast
as before changing the parameters. However, the evacuation is then more sensitive to
changes in the guides’ initial positions.

6.6 Effect of other model parameters

Let us briefly discuss how the model parameters affect the Pareto-optimal solutions. We
refer to our study [33] for a comprehensive numerical and experimental investigation on
the effect of the physical model parameters on congestion in an intersection.

The larger the area the agents are distributed over, or the more sparse the crowd is,
the more guides are needed to control it. Nevertheless, with a sparser crowd, physical
contact forces are reduced, which results in less congestion and queueing time. A more
densely distributed crowd has the opposite effects.

In our toy example, the size and initial positions of the crowd are symmetrical. Intro-
ducing asymmetry, in most cases, does not affect the optimal evacuation plan notably.
Nevertheless, if some groups have more agents or are initially positioned closer to the
intersection, they contribute more to the emergence of the congestion. Hence, guides
are initially positioned next to these agent groups to steer them away from colliding with
other groups.

7 Discussion and Conclusion

In this paper, we model the movement of a crowd consisting of passengers and guides
with a modified social force model. A guide follows routes instructed by the evacuation
planner. A passenger goes about its business unless a guide comes within an interaction
range and leads it to an exit. The uncertainty of the crowd conditions is described as
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probabilistic scenarios, which are modeled by altering some of the model input param-
eters. We formulate the problem of minimizing crowd evacuation time under different
scenarios using rescue guides as a bi-objective scenario optimization problem. The two
objectives are the mean and CVaRα of evacuation time over the scenarios. We present
a solution procedure combining numerical simulation and the NSGA-II algorithm. It
returns the Pareto-optimal evacuation plans. The procedure is applied to a toy example
that is an evacuation of a fictional passenger terminal.

This paper’s research question is what happens to the optimal evacuation plan if a
large part of a crowd can deviate from its usual behavior. In our example case, for a
fixed number of guides less than four, there is a tradeoff between minimizing the mean
evacuation time or CVaRα . With four guides, we obtain a single solution that is optimal
for all scenarios.

Often in studies and federal guidelines, evacuation plans are presented by mainly
stating the optimal proportion of guides [15, 34–38]. We do not think such rules guar-
antee an efficient evacuation other than in very simple situations. Rather, the optimal
evacuation plan is a function of the building geometry [39], the initial crowd distribu-
tion and behavioral conditions. As could be seen from the optimal evacuation plans in
our toy example, with the same number of guides but different route choices, different
objectives are optimized.

In [14] it was found that near-exit positions are good, and in [35] that for building
geometries with multiple exits, the guides slow down the evacuation unless all exits
are utilized. These findings coincide with our results, given that average performance
over scenarios is optimized. Our mean-optimal solutions use a near-exit strategy, where
guides are positioned near their destination exits. Maybe a more useful quantity than
the initial position is the proximity of a guide to the crowd. In [40] it was found that
simultaneously positioning guides inside the crowd, on its periphery, and at a distance
from it improved evacuation time. However, in the study, the aim was to evacuate a
large crowd using the same route. In our study, since the agent groups are relatively
small, it is enough to locate one guide per group within the interaction range.

If there is a possibility for a large congestion, and we decide to optimize worst-case
performance, a different strategy is needed, as our CVaRα -optimal solutions show. The
guide’s focus should be on solving the congestion by moving parts of the crowd else-
where. Most preferably, the crowd members should be moved away from the congestion
area already before the congestion occurs.

In our study, we minimize the evacuation time. It could be interesting to see how the
optimal evacuation plans change if there is a time limit within which the crowd should be
evacuated. For example, in fire safety literature, a distinction is made between required
safe egress time (RSET) and available safe egress time (ASET). RSET defines the time
it takes to evacuate the crowd, and ASET the time before the conditions become lethal
[25, 41]. If RSET is less than ASET, the evacuation is efficient, and the evacuation is



Minimization of Mean-CVaR Evacuation Time of a Crowd using Rescue Guides 25

unacceptable if RSET is more than ASET. The time limit could be implemented into our
optimization framework by penalizing for the evacuation time exceeding ASET. So, we
would still minimize evacuation time, and at the same time penalize for the evacuation
time exceeding ASET.

The framework we have presented here, with some modifications, could also be used
for a phased evacuation, i.e., an evacuation where the whole crowd does not exit the
building simultaneously. We could implement this by adding the time periods when
guides stop their movement as optimization variables. When the guide does not move,
neither would the agents that follow it.

In future research, it would be challenging to try our model on a real-world case
with real data. If one wants to add more complex crowd behaviors in our framework, it
can be done by modeling them as scenarios. If assigning probabilities to the scenarios
is difficult, the worst-case performance, in the sense of robust optimization, can be
used [19]. If the crowd’s size increases, the numerical simulations with the social force
model might become very slow even on a supercomputer due to nonlinear contact forces
between agents. We could then deal with the computational inefficiency by performing
numerical simulation with an implicit integration scheme [42]. Since many buildings
and evacuations share similar features, our solution process’s efficiency could be further
increased. We could solve the optimal evacuation plans for typical situations in advance
and store them. A neural network could then be trained by the plans and used to give
fast approximate optimal evacuation plans for previously unsolved problems.
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