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Abstract This study proposes a method that combines the cellular automaton model and
the differential evolution algorithm for optimising pedestrian flow around large stadiums.
A miniature version of a large stadium and its surrounding areas is constructed via the cel-
lular automaton model. Special mechanisms are applied to influence the behaviour of an
agent that leaves from a certain stadium gate. The agent may be attracted to a nearby busi-
ness facility and/or guided to uncongested areas. The differential evolution algorithm is
then used to determine the optimal probabilities of the influencing agents for each stadium
gate. The main goal is to reduce the evacuation time, and other goals such as reducing
the costs for the influencing agents’ behaviours and the individual evacuation time are
also considered. We found that, although they worked differently in different scenarios,
the attraction and guidance of agents significantly reduced the evacuation time. The opti-
mal evacuation time was achieved with moderate attraction to the business facilities and
strong guidance to the detouring route. The results demonstrate that the proposed method
can provide a goal-dependent, exit-specific strategy that is otherwise hard to acquire for
optimising pedestrian flow.
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1 Introduction

Numerous studies have been conducted on the evacuation process during emergency and
non-emergency situations. Two aspects are of particular importance: the evacuation time
[1] and human behaviour [2]. Recently, human behaviours and the psychology behind
them are receiving increasing attention. There are three types of human behaviours that
need to be considered: interactions among people, interactions between people and build-
ings, and interactions between people and the environment [3]. The phenomena generated
from these behaviours may not be easily acquired from a real evacuation due to practical
limits; therefore, simulation models are necessary to obtain a better understanding of this
issue.

Evacuating a large stadium, or a large indoor building space in general, can be ex-
tremely lengthy, especially during major events. Many long and complex evacuation
routes exist simultaneously for large buildings, and these routes may be subject to sudden
changes due to fire, smoke, and other issues that may occur during an emergency [4]. Vis-
ibility may be impaired due to smoke and lighting conditions, although this issue may be
mitigated through certain devices like phosphorescent guidance equipment [5, 6]. People
may have different knowledge of the area, and some of them may have special roles, e.g.
staff members or first responders [7]. Coordination and guidance can be provided through
normal, predetermined approaches, as well as smart systems that can respond quickly to
the situation [8]. Special electronic systems to analyse pedestrian flow have been success-
fully applied to stadium cameras, facilitating the dynamic management of congestion [9].
Generally, relying solely on pedestrians’ spontaneous behaviours may result in an ineffi-
cient or unsafe evacuation. Therefore, it is necessary to conduct pedestrian managements
to improve the evacuation process.

On the other hand, many studies have focused on the process of leaving buildings and
the people that successfully evacuated the buildings. However, congestion can still happen
when people are trying to leave the surrounding area after exiting the building. There
are studies about the evacuation process that can occur in a large outdoor space during
emergencies [10, 11]. We believe that further research is required to understand the non-
emergency evacuation process in an outdoor space and optimizing such an evacuation by
influencing people’s behaviours.

Individual decision-making processes have been proven to be vital for evacuation, with
the exit choice being one of most well-studied options [12–14]. Applying dynamic control
strategies to influence pedestrians’ decisions has now been considered as a viable choice
[15]. This may include providing instructions to pedestrians via various devices [14],
as well as more traditional options like using road signs and volunteers. Architectural
options like redesigning obstacles layout is also a viable choice under certain conditions
[16]. For the time being, however, “forcing” pedestrians to make certain choices is not
a realistic way to optimize the evacuation. Therefore, we have decided to focus on non-
compulsory methods and result-oriented optimization indexes. For example, if attracting
people to a nearby shop can shorten the evacuation time, we may focus on the appropriate
number of people we need to attract, instead of the exact methods. To simulate these
phenomena, we chose to use the cellular automaton model, a simple yet adaptive tool for
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pedestrian simulations.
The extended floor field cellular automaton model is a well-tested model for pedestrian

simulations [17]. In this model, each pedestrian (agent) moves within a grid to simulate
the evacuation process. The movement direction is determined by the strength of the floor
field, as shown in Fig. 1. Different types of floor fields may be used to represent the differ-
ent interactions, including the people’s knowledge about the environment, the tendency of
following others, certain behaviours like staying away from the wall if possible, and the
negative effects of hazards like smoke or gas [17–19]. Assuming that there are two types
of floor fields in the area (P,P′), the probability of moving to each cell is determined by
the floor field strength.

pi = Nexp(kPi + k′P′i )exp(kI), i = 1,2,3,4 (1)

where N is the normalisation factor; k and k′ are the sensitivity parameters. The normal-
isation factor will ensure the sum of the four probabilities is 1. kI is an adjustable value
that represents the inertia effect, and it is 0 for the directions that are not the movement
direction in the previous time step [17–20]. In order to find the optimal layout or strategy
in a given scenario, combining certain simulation models with optimization methods has
been proven to be a viable option [16, 21].

Figure 1 Agent and its target cell (von Neumann neighbourhood) at the next time step.

The aim of this study is to develop a method that is capable of optimising the pedes-
trian flow around large stadiums. Based on the simulation results that are provided by the
cellular automaton model, the program will attempt to optimise the pedestrian flow by
influencing people’s behaviours with novel mechanisms that we developed. We then in-
troduce a simple and effective optimisation algorithm known as the differential evolution
algorithm (DE) to help with this complicated optimisation [22]. Although the size of the
simulation is limited due to the sheer number of simulations that are required to run the
DE, this method can still provide useful insights about how can we reduce the evacuation
time while considering other goals like individual evacuation time and guidance cost.
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2 Mini-Dome

We developed an extended floor field cellular automaton model for the area around a
large stadium.The cellular automaton model is chosen as a balance between accuracy and
computation time. The overall layout that was used as a reference is the Tokyo Dome, a
baseball stadium in Japan, and its surrounding area (Tokyo Dome City). Multiple train
stations that serve as exits exist in the area, and people may also choose to visit the sur-
rounding business facilities instead of going directly to the train stations after leaving the
stadium. Due to the limitation of the computing power,the model is much smaller than
the area in reality and is referred to as “Mini-Dome”.

2.1 Overview

As shown in Fig. 2, the size of the model is 32 × 55 cells. An aerial view of the area
from Google Maps is also given. Each cell represents a 0.4 × 0.4 m square. The north
is at the top of the model. Most of the geometry details are missing due to the limited
size. Because 2,000,000 simulations are needed per optimisation, it would be extremely
time-consuming to run the program if the model becomes excessively large. The blue
cells—or the path—are areas that are available for walking. The three train stations in the
area (JR Suidobashi, Toei Mitasen Suidobashi, Korakuen) are referred to as stations A,
B, and C, respectively. Note that for stations A and C, two separate paths are available.
For station A, the path marked by the long orange arrow is referred to as the south path,
and the long green arrow marks the southeast path. The business facilities represent the
various shops and restaurants within the area.

The 10 × 10 block in the centre represents the stadium. The total number of agents that
need to be evacuated is 200. This number is selected because it may provide a long enough
time period for us to observe the effect of attraction, guidance, and the congestion of the
south path. As shown in Fig. 2, seven gates or stadium exits will continue to generate
agents until the total number reaches 200. To avoid confusion, they are referred to as
“gates” instead of “exits” in this study. After being generated, the agents will move to the
train stations and business facilities to leave the area, and the time it takes to complete this
process is defined as the evacuation time. The evacuation process is guided by the static
floor field, attraction floor field, and guidance. These three components are covered in the
following sections.

2.2 Area Exits: Train Stations and Business Facilities

After being generated at the gates, an agent may leave from a train station or a business
facility. The main options for the agents to leave the area involve using the three train
stations under the influence of the static floor field. The static floor field is defined as the
opposite number of a cell’s distance to the train station. In most pedestrian evacuation
studies that use the cellular automaton model, an agent can evacuate through any one of
the exits that are available. In Mini-Dome, this assumption is not true because different
train stations usually offer different train routes. Generally, it is expected that everyone
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has a train station as the desired destination before leaving the stadium. We can assume
that even if one knows that a station may be crowded, using another station is not an
option. When an agent is generated, it should be immediately assigned a specific train
station as the destination. This destination cannot be changed afterwards.

Figure 2 Mini-Dome and aerial view of Tokyo Dome City. Map data: Google Maps, Maxar Technologies,
2021.07.17.

Agents with different destinations will be influenced by different static floor fields, and
the areas that are close to each train station are only available for the agents with that train
station as the destination. We assume that every agent has full knowledge of the entire
area before leaving the stadium. Therefore, the dynamic floor field, which is often used
to simulate the tendency of people following others, is no longer needed as every agent
knows exactly where to go. Based on our observation, most people enter and leave the
Tokyo Dome City through station A, whereas station B and C are not popular choices.
Therefore, we assumed that 70% of the agents will choose station A as their destination.
For stations B and C, the numbers are 15%.

In reality, the seats in the stadium are often randomly assigned, and people tend to leave
the stadium from the nearest exit instead of finding another one. Therefore, we assumed
that an agent’s destination is not related to the position of the gate that it is generated
from.
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Finally, we designed the destination selection mechanism as follows: when an agent
is generated, regardless of the position of the gate, it has a probability of 70% that it is
assigned station A as the destination. The probabilities of being assigned stations B and C
are 15%. It is worth noting again that this setting has a distinct feature that seperates Mini-
Dome from other models [8,9,13–15]: agents’ destintaions are randomly determined and
cannot be adjusted in order to shorten the evacuationt time. This means that an optimal
evacuation strategy will need to consider the random nature of agents’ destinations.

In addition to the three train stations that function as the main exits from the area, there
are three business facilities that may also function as exits. They represent restaurants,
shops, and bars. If an agent chooses to visit a business facility and spend some time in it
instead of going directly to the train station, it is likely that the evacuation will have been
completed before they leave. Therefore, it is reasonable to say that they are evacuated
“through” the business facilities in our simulation. We only considered this type of visit
and ignored the ones who only briefly visit the business facilities before leaving. This is
because they re-join the crowd in a rather short time, and therefore, cannot be regarded as
evacuated.

The key difference between the train stations and business facilities is that each business
facility has a maximum capacity of 10, i.e., only a maximum of 15% (30/200) of the
agents may evacuate through business facilities. The train stations, however, are assumed
to have no capacity limits.

2.3 Attraction

To simulate the process of attracting people to the business facilities with advertisements
and other methods, we designed a novel mechanism referred to as “attraction”. Usually,
pedestrian simulation models assume that agents may only leave the area from the exits
on the edge of the model, especially for models about emergency evacuation. For Mini-
Dome, this assumption is no longer true, because we are considering an outdoor, non-
emergency evacuation with a number of business facilities within the area.

When each agent is generated, it has a probability of becoming “attracted”. To achieve
a gate-specific strategy, we assume that there are seven independent probabilities, which
are referred to as “attraction rates”. Theoretically, all the attraction rates can change from
0 to 1. For simplicity, we assume that only the attracted agents can use business facilities
to leave the area. The attracted agents may also leave from the train stations, provided
that they failed to reach the business facilities or were rejected after a business facility
reached its limit.

Attraction rates are result-oriented. In reality, we may influence a certain percentage of
people by giving away brochures, launching sales campaigns, as well as other measures.
We also hope that this could make our model more versatile, because different stadiums
may apply very different method to achieve the same goal.

As an attracted agent approaches a business facility, it will be influenced by the “at-
traction floor field”, an example of which is given in Fig. 3. The attraction floor field will
guide attracted agents to the cell where the business facility is located. Unattracted agents
will not be influenced by the attraction floor field.
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Figure 3 Attraction floor field around a business facility, which is located in the top-right blue cell. An
attracted agent (the blue circle) is moving within the area.

Assume that during the last timestep the agent moves to the right to reach the current
position. Then, for the attracted agent (the blue circle in Fig. 3), the probabilities of
moving to the surrounding cells are as follows:

pi =

{
Nexp(kSSi + kAAi)exp(kI) (i = 2),
Nexp(kSSi + kAAi) (i 6= 2),

j = 1,2, ...,D (2)

where the sensitivity parameters are kS = 3 , kA = 1, and kI = 0.2 in our simulation. The
index i ∈ 1,2,3,4 represents the direction as shown in Fig. 1. S and A are the values of
the static and attraction floor field, respectively. In the case of Fig. 3, A1 = A2 = 1 and
A3 = A4 = 0. As mentioned before, the business facilities stop accepting agents once the
capacity limit has been reached. However, the attraction floor field will still influence the
attracted agents even if the business facility is at full capacity. This will interfere with the
normal evacuation process and increase the evacuation time. We believe that this might
represent how the pedestrian flow can become hindered if a long queue exists outside of
a business facility.

2.4 Guidance

The southeast path to station A (Fig. 2) is seriously underused in the simulation and in real
life. This is because this route is much longer than the south path (Fig. 2). Naturally, we
may guide agents to this path to reduce the congestion on the south path. This mechanism
is referred to as “guidance”. Similar to attraction, an agent also has a probability of



8 Y. Dong · X. Jia · D. Yanagisawa · K. Nishinari

Figure 4 Guidance of the agents to use the southeast path to station A.

becoming “guided” once it is generated. The two processes are independent from each
other; therefore, it is possible for an agent to become attracted and guided, or unaffected
by both. The guidance rates, which can change from 0 to 1, are assigned to seven gates.
The guided agents are forced to enter the southeast path once they have reached the area
that is marked by the red box in Fig. 4. Afterwards, they will temporarily ignore all the
floor fields and move in the direction of the red arrow.

If they cannot reach these two cells, they may also evacuate normally through the train
stations and/or business facilities (if attracted). The longer path requires more time steps
for an agent to evacuate. However, because the south path usually sees heavy congestion,
the evacuation time will often decrease as the guidance rates increase.

It is worth noting that attraction and guidance cannot change agents’ destinations. An
agent influenced by attraction may not visit a business facility for certain reasons: it may
not reach the place during the evacuation; the business facility is full; it walks away due
to sheer possibility. An agent influenced by guidance does not have to use the southeast
path, if it manages to evacuate through other paths. We believe this may better simulate
the human psychology. For example, if one leaves the stadium with a brochure of a nearby
shop in his/her hand, he/she will be more likely to visit the shop if it comes in sight on
the way home. However, it is less likely that he/she will be looking for it carefully before
going home, resulting in a change in destination or route choice. For simplicity, we only
consider the first scenario.

3 Differential Evolution Algorithm

The differential evolution algorithm (DE) is a simple yet powerful evolution algorithm
that was proposed by Storn and Price in 1997 [22]. The population-based stochastic
technique has been proven to be highly effective when used in multiple fields [22–24].
This section briefly describes how the algorithm works and how it is integrated with the
cellular automaton model. Similar to other evolution algorithms, the DE generates a
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population with N vectors randomly within the D-dimensional search space. Each vector
in is a D-dimensional vector, and it is called an individual. In our case, N=10 and D=14
(seven attraction rates and seven guidance rates). The search space range is [0,1]. The
value of the ith individual on the jth dimension may be generated as follows:

x j
i = rand[0,1], j = 1,2, ...,D. (3)

The second step is to calculate the fitness values of all the individuals. The goal of the
DE algorithm is to find an individual that has the smallest fitness value possible. The
fitness value is usually generated from a specific function. In this study, the fitness value
can only be acquired from running the simulations for a certain number of times while
setting the values of an individual as the attraction and guidance rates. The determination
of the fitness value is covered in section 4. After acquiring the fitness values for all the
individuals, a mutation operation is carried out to generate a mutated individual (mutant
vector) for each individual (target vector). There are many types of mutation strategies.
The strategy we applied is to find three random individuals (except for the individual un-
dergoing the mutation itself): xr1 ,xr2 ,and xr3 . The mutated individual Vi can be expressed
as follows:

Vi = xr1 +F(xr2− xr3), (4)

where F is the differential weight and F is defined as 0.85.
The next step is crossover. Each pair of the mutant vector and target vector will undergo

a crossover operation to generate a new trial vector Ui. For each dimension of the trial
vector, we can calculate the value by a simple binomial crossover strategy that is defined
as follows:

U j
i =

{
V j

i , i f rand[0,1]≤ PCR or j = jrand

xi, otherwise
j = 1,2, ...,D, (5)

where jrand is a randomly selected dimension and PCR is the crossover probability. jrand
will ensure that at least one parameter of the trail vector is from the mutant vector [22].
We can set PCR as 0.5. The crossover operation essentially merges the mutant vector and
target vector. The simple mutation and crossover strategies separate DE from genetic
algorithms.

Finally, all the individuals will be checked to determine if they have values that exceed
the upper and lower bounds. If so, these values will be changed to the upper and lower
bounds, or 0 and 1 in our case. The fitness values of all the individuals will be evaluated
again. If it has lower or equal values than the fitness value that was acquired last time
(meaning Ui is better), Ui will replace xi. Otherwise, xi will not change.

The above process will continue until the maximum number of iterations has been
reached (here, 100). We selected this small number to keep the computation time within
an acceptable range. As discussed above, the fitness value for a single individual needs to
be evaluated for twice in one iteration. Therefore, for one optimisation with 10 individuals
and 100 iterations, we need to evaluate the fitness values for 2×10×100=20,000 times.

How DE interacts with Mini-Dome is shown in Fig. 5. DE gives Mini-Dome an individ-
ual that is comprised of seven attraction rates and seven guidance rates, then Mini-Dome
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Figure 5 The block diagram of optimization process. An individual is comprised of seven attraction rates
and seven guidance rates.

will give DE the fitness of that individual after performing a number of simulations. The
two components operate relatively independently.

4 Results and Discussion

4.1 Number of Simulations Needed

Many random elements exist in the Mini-Dome. Therefore, for each set of attraction rates
and guidance rates, we need to simulate the Mini-Dome a number of times and calculate
the average to obtain stable results. Agents with different destinations will often have
conflicts with each other in the central area. This feature largely increases the stochasticity
level of the model, influencing the accuracy of evacuation time we acquired.

To determine how many times we need to simulate the Mini-Dome to gain a stable evac-
uation time, we tested several numbers. The results are given in Tab. 1. Note that the av-
erage values and standard deviations are calculated from 200 independent tests, and each
test gives the average result from a certain number of simulations. A K-S test was carried
out to confirm that the 200 results follow the noraml distrbution. It fails to reject the null
hypothesis that it does not come from such a distribution at 1% significance level.The
similarity is demonstrated in Fig. 6. Based on the feature of normal distribution, there is a
95% chance that the result falls into range of [219.3790-2*0.8181,219.3790+2*0.8181].
The error should be below 0.75% for 95% of the time. If the number of simulations
decreases to 500, the error will become much larger (below 1.1%). Running 2000 simula-
tions for each fitness value is slightly more accurate, however, the computation time will
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Number of Simulations 100 300 500 1000 2000

Average Fitness Value 219.2848 219.4513 219.3231 219.3790 219.3696
Standard Deviation of

the Fitness Value 2.4465 1.5937 1.2211 0.8181 0.6179

Table 1 Averages and standard deviations of the fitness values when running the simulations for a given
number of times.

Figure 6 The cumulative distribution function of empirical data (our results) and standard normal distri-
bution

be unacceptable.
We selected 1,000 as a balance between the accuracy and feasibility. For each one of the

10 individuals, its fitness value will have to be checked twice in every iteration. Because
we ran the DE for 100 iterations, it was necessary to conduct 2×10×100×1,000=2,000,000
simulations for a single optimisation. This number means that the size of the CA model
must be highly limited to complete the 2000000 simulations within reasonable time. The
limited size is another major source of error in this study. In addition, the DE itself is a
stochastic optimisation method that may generate random errors as well.

4.2 The Effect of the Attraction and Guidance

To demonstrate how the attraction and guidance influence the evacuation time, we may
consider a special scenario where every gate uses the same attraction rate and guidance
rate. As shown in Fig. 7, the attraction rate will have a negative impact on the evacuation
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Figure 7 Change in the evacuation time if all the gates use the same attraction and guidance rate.

time once they have reached a certain value. When the guidance rate is 1, the optimal
attraction rate is around 0.25. The minimum evacuation time can be achieved this way in
this special scenario. For other guidance rates, there is an optimal attraction rate that can
minimise the evacuation time. From this result, we may speculate that there are optimal
rates that can minimise the evacuation time, and we can use DE to find it.

4.3 Results from the Three Scenarios

To better understand the effect of the attraction and guidance, three scenarios are consid-
ered.

1. Basic: The basic scenario disabled the attraction and guidance, so it can be used as
a baseline to evaluate the results from the other two scenarios. The result of this scenario
is from the average of 100,000 simulations.

2. Ideal: In the ideal scenario, we assumed that the attraction rates and guidance rates
can change freely from 0 to 1, and only the evacuation time needs to be optimised. The
fitness value is simply defined as

Fitness = EvacTime (6)

In real life, we cannot expect that advertisements or other methods are capable of attract-
ing 100% of the people to the business facilities. However, it is difficult to imagine that
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Scenario Fitness Value Evacuation Time Tmax G

Basic N/A 257.5752 N/A N/A
Ideal 217.1404 217.1404 70.1982 5.6349

Realistic 307.4740 225.3247 78.7663 3.1264

Table 2 Fitness values, evacuation time, maximum individual evacuation time, and guidance cost results
from the three scenarios.

no one will visit the business facilities after leaving the stadium. Therefore, this scenario
is referred to as “ideal”. Because the DE will only try to optimise the evacuation time,
it is possible that several agents will have to stay in the area for a very long time before
leaving the area. The results of the ideal scenario are the average for 10 independent
optimisations.

3. Realistic: In the realistic scenario, we assumed that there are upper limits and lowers
limits for the rates (0.05–0.5), and the DE will also try to optimise the indexes other than
the evacuation time. The fitness value is defined as follows.

Fitness = EvacTime+Tmax +G (7)

where Tmax is the maximum individual evacuation time, and G is the sum of the seven
guidance rates. Two additional indexes are considered: the maximum individual evacua-
tion time and the guidance cost. The program tracks each agent to know how long it takes
for every agent to leave the area. Even if the evacuation time is the same, it is possible
that certain agents may require a lot of time to evacuate. For example, if an agent uses the
southeast path to go to station A after being generated at gate 1, the process may take more
than 70 time steps, whereas most agents may evacuate in 30–50 time steps. The aim is to
make this phenomenon happen less often. The guidance cost represents the cost of hiring
volunteers, putting up signs, and other necessary actions for guiding the pedestrian flow.
Even though the evacuation time is usually much larger than the guidance cost, the former
usually changes between 215 and 230 timesteps. This means that a change in the latter
will have an impact on the fitness value. The attraction cost is not considered because the
people that are attracted to business facilities will also generate profits. For simplicity,
we assumed that the two effects cancel each other out. Similar to the ideal scenario, the
results are also from the average of 10 independent optimisations. The results are shown
in Tab. 2, Tab. 3, Tab. 4, and Tab. 5. An example of the convergence curve is given in
Fig. 8.

The most obvious result is that the attraction and guidance significantly reduce the
evacuation time. However, the two mechanisms work differently in different scenarios.
In the ideal scenario, we may see that gate 1, which is far from the shops, should have the
highest attraction rates. For the other gates, attraction is not even required. This means
that extra advertisement efforts should be made in gate 1 to attract people and optimise
the flow. Because gate 1 is the farthest from station A, it will be beneficial to attract as
many agents as possible to business facilities, instead of letting them walk to station A



14 Y. Dong · X. Jia · D. Yanagisawa · K. Nishinari

Figure 8 The convergence curve of an optimization. Note that the numbers are different from the data in
the tables, which is the average of 10 optimizations.

Scenario Station A1 Station A2 Station B Station C Business Facilities

Basic 133.5547 6.4948 30.0018 29.9488 0
Ideal 82.5025 39.3567 27.1350 29.9064 21.0813

Realistic 100.5963 22.2227 27.6290 29.1465 20.4055

Table 3 The number of agents left from each station and the business facilities. Agents leaving from the
south path (A1) and the southeast path (A2) to station A are recorded separately.

Scenario Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6 Gate 7

Ideal 0.8054 0.0173 0.0038 0.0018 0 0.0322 0.0089
Realistic 0.4965 0.2486 0.0584 0.0615 0.0856 0.1208 0.2283

Table 4 Attraction rates for each gate given by the DE. Basic scenario is not included because the attrac-
tion is disabled.

Scenario Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6 Gate 7

Ideal 0.9781 0.9265 0.9696 0.9371 0.9270 0.5594 0.3463
Realistic 0.4976 0.4970 0.4989 0.4981 0.4833 0.4075 0.2440

Table 5 Guidance rates for each gate given by the DE. Basic scenario is not included because the guidance
is disabled.
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and cause the congestion. To avoid the negative effect of the attraction, other exits should
have limited advertisements.

In general, higher guidance rates are better, especially for gates 1–5. Therefore, guid-
ance is more important than attraction, provided that everyone can follow orders in terms
of where they should go. The organisers should focus on guiding everyone (or everyone
using gates 1–5 at least) to use station A through the southeast path, if possible. This
conclusion may be interpreted as the strategy for extremely important and stressful occa-
sions like the Olympic games. For these situations, the evacuation time may be the only
concern due to safety issues, whereas the budget and manpower are usually not issues.

In the realistic scenario, the attraction is still very important for gate 1, although gate
2 and gate 7 are also seeing higher attraction rates. Gate 2 and gate 7 are close to gate
1, therefore attracting agents generated from these two gates are also more effective than
other options. The effectiveness of the guidance is slightly reduced by considering the
individual evacuation time and guidance cost, and less agents can be guided to use the
southeast path. This is more similar to a stressful yet normal scenario like baseball league
matches. Even though the evacuation time is still important, the costs for guiding people
cannot be too high. Advertisements and other methods for attraction will have to play
a more important role during an evacuation. The efforts for the attraction and guidance
should be more carefully distributed among the gates.

5 Conclusion

In this study we developed a method that combines the cellular automaton model and
differential evolution algorithm. The method is capable of simulating and optimising the
pedestrian flow around a large stadium. Several novel modifications, namely the desti-
nation selection, attraction, and guidance, are made to improve the simulation of human
behaviours during a non-emergency evacuation. Strategies for different purposes can be
given after integrating the model with the differential evolution algorithm. We can also
identify which gates are of particular importance, and which gates are not.

However, our model was much smaller than the actual area owing to the limited com-
puting power of our system. In the future, we plan to build a larger, more ideal model
to perform additional simulations. By carefully adjusting the layout, the evacuation pro-
cess may become clearer. The process of attraction of an agent or the guiding mechanism
may be adjusted during the evacuation process, instead of being determined during the
generation, to better represent what happens in real life.
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