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Abstract In this work we present a simple routing model capable of capturing pedestrians
path choices in the presence of a herding effect. The model is tested and validated against
data from a large scale tracking campaign which we have conducted during the GLOW
2019 festival (Eindhoven, The Netherlands). The choice between alternative paths is mod-
eled as an individual cost minimization procedure, with the cost function being associated
to the (estimated) traveling time. In order to trigger herding effects the cost function is
supplemented with a penalty term, modulated as a function of the fraction of pedestri-
ans walking along each route. The model is shown to provide an accurate quantitative
description of the decision process.
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1 Introduction

Deepening our understanding of pedestrians choice processes and their macroscale reflec-
tions has immediate societal impact, for example in helping to increase safety and comfort
in relation to urban design and planning of small and large scale events [1, 2].

Several studies [3–6] have shown that pedestrian routing choices can be modeled in
terms of suitable utility (cost) functions that individuals attempt to maximize (minimize).
Besides the traveling time, a few other examples of parameters entering such utility func-
tions, which have been shown to be relevant in pedestrian routing processes, are path
directness, perceived comfort, and even esthetic aspects [6, 7].

While several models are being proposed (see e.g. [8] for a review), a quantitative un-
derstanding of pedestrian dynamics is often limited by the lack of large datasets that could
allow for testing and calibration purposes. In the past, theories and models were mostly
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tested on data from small scale experiments conducted in laboratory conditions [9–16],
where it is in general complicated to avoid interfering with the observed phenomenon.

During the last decade, pedestrian sensing by means of overhead depth-cameras has
emerged as a promising alternative approach, both in terms of accuracy and scalability
[17–20]. In this work, we make use of large dataset of pedestrian trajectories, collected
during 7 days of tracking at the Glow 2019 festival in Eindhoven (The Netherlands), to
validate a routing model capable of describing pedestrian decisions influenced by herding
effects.

We propose a simple model in which choices of single individuals are evaluated as a
cost minimization process in which pedestrians aim at minimizing their perceived trav-
eling time, which is in turn modulated by a penalty factor, function of the local den-
sity/occupancy of the different paths.

This paper is structured as follows: in Section 2 we introduce the routing model. In
Section 3 we provide a brief description of the experimental setup, to then calibrate the
model and compare numerical results against experimental data. The paper ends with
Section 4 summarizing our results and drawing possible future directions.

2 Modeling pedestrians routing choices

We consider a simple graph consisting of two nodes, a starting node and a destination
node, connected by K links, each representing possible alternative paths. The weight
associated to each link is defined by a cost function Ti(ζζζ ), i ∈ {1, . . . ,K}, where the
vector ζζζ represents the set of information available to (or estimated by) the pedestrian
making the routing choice (e.g. the path length, the number of people traveling along the
path, their velocity etc.).

We assume that each pedestrian takes the path associated to the link of minimal cost.
Formally, we express the pedestrian choice of taking path i over all other alternatives with
the variable xi

xi =

{
1, if Ti < Tj ∀ j 6= i
0, otherwise

(1)

We consider the following cost function:

Ti = fi · ti = fi ·
vi

Li
, (2)

where fi is a penalty function, ti is the (estimated) traveling time along path i, calculated
as the ratio between the walking speed vi and the path length Li.

The role of the penalty function is to increase the cost attributed to the path by the
pedestrian, de-facto allowing the pedestrian to take suboptimal choices.

We here introduce a penalty function designed to take into account herding effects. In
this case, pedestrians will attribute a higher cost to paths that are rarely chosen by other
pedestrians. Conversely, the penalty should decrease in such a way that the perceived cost
gets closer to its real value as the number of pedestrians walking across a route increases.
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We name ni the fraction of pedestrians present in the system (thus visible to the pedestrian
making the choice), currently walking across path i. Hence, we propose the following
penalty function:

fi(ni) = (1+a)−a tanh(s(ni−n0)) , (3)

The role of the parameters a, s and n0 is as follows:

• a controls the amplitude of the penalty, and the bound holds fi(ni) ∈ [1,2a+1];

• s controls the smoothness in the transition between the two asymptotic values of the
penalty function;

• n0 determines where the transition occurs.

3 Numerical results

In this section, we test and calibrate the routing model introduced in the previous section
using a dataset of about a hundred thousand trajectories, collected during the 2019 Glow
festival in the city of Eindhoven (The Netherlands).

The experimental setup, sketched in Fig. 1, was established on the perimeter of the
Philips Stadium, along the uni-directional route of the festival amid two consecutive fes-
tival exhibits. When approaching the setup, each pedestrian faced a binary choice: passing
an external pillar bearing the stadium grandstands either by its right or left side (consid-
ering the point of view of snapshot in the botton left corner of Fig. 1). Respectively, these
were a slightly shorter and approximately straight path, in the following referred to as path
A, and a curved path partially intersecting a bicycle lane (closed during the experiment),
named path B henceforth.

We acquired individual pedestrian trajectories at 30Hz time resolution by means of
overhead depth images and the HA-HOG localization method [21]. We collected raw
depth images of a walkable area of about 30m2 via 8 Orbbec Persee sensors attached
underneath a pedestrian overpass, and arranged in a 4x2 grid (see dashed gray line in
Fig. 1; cf., e.g., [22, 23] for detailed explanations on pedestrian tracking via depth sensor
grids).

We start our analysis by taking into account the cost function in Eq. 2, neglecting for the
moment the penalty term. We consider therefore a policy in which pedestrians perform
their routing choice by trying to minimize their traveling time.

We assume that pedestrians perform their choice at the moment when they enter the
experimental setup, and that they are provided with full knowledge of all system variables,
such as the number of pedestrians currently present in path A and B, respectively NA and
NB, and their walking speed.

In order to evaluate Eq. 2, we need to provide an estimate for what would be the (av-
erage) walking speed of a single pedestrian, depending on the routing choice. We extrap-
olate this information from the fundamental diagram, which puts in relation the average
velocity and density (pedestrian count, in our case). In Fig. 2 a) we show the fundamental
diagram, distinguishing between pedestrians walking along path A and B. We observe
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Figure 1 Sketch of the experimental setup, showing a low fence blockage driving the pedestrian flow
towards the path bifurcation, with a set of bollards separating the bicycle lane from the adjacent
road. A grid of 4x2 Orbbec depth cameras, hanging below the overpass connecting the Philips
stadium to a nearby train station, is used to collect trajectories within the area marked by dotted
lines. Within this area we are showing 450 example trajectories recorded on the 9th of November
2019. The length of the two paths is respectively LA = 8.5 m and LB = 9.0 m. The bottom left
panel shows a picture of the experimental site taken from the point of view of a pedestrian
approaching the path bifurcation.

that as the pedestrian count increases, the average velocity decreases at an approximately
linear rate in both cases, consistently with studies conducted in comparatively low-density
regimes [9].

In Fig. 2 b), we also show the probability distribution function (PDF) of the velocity,
for three different density ranges. The two panels of Fig. 2 do not highlight significant
differences between the walking speed of pedestrians across the two paths. For simplicity,
we then consider a linear model for the fundamental diagram, in which we assume the
same free-stream velocity (v0) and the same slope (κ) for both path A and path B:

vi = v0−κ Ni, i ∈ {A,B} . (4)

The black line in Fig. 2 represents the results of the linear fit with v0 ≈ 0.965±0.012 m/s
and κ ≈ 0.014±0.001.

By combining Eq. 2 with Eq. 4 we can implement and evaluate the routing model.
Operationally, for each pedestrian we take the following steps:

1. We calculate the average velocity v̄ of the pedestrian along its trajectory.

2. We assume that each pedestrian has its own “free-stream” velocity, which we can
calculate from Eq. 4:

v0 = v̄+κ Ni , (5)
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Figure 2 a) Fundamental diagram putting in relation the average walking speed of pedestrians with the
pedestrian count, in path A (NA, orange dots) and path B (NB, blue dots). The dotted black line
represents the linear fit given by Eq. 4. In order to compute the error bars, we have divided
data related to each different value of NA (resp. NB) into 10 bins; the extrema of the error bars
represent the minimum and maximum average velocity value per bin. b) Velocity probability
distribution function (PDF) for three different density ranges. Continue lines represent the PDFs
for path A, while dotted lines refer to path B.

where Ni is the number of pedestrians present in the path then chosen by the pedes-
trian in the moment he entered the system.

3. We consider NA and NB at the time the pedestrian first enters the system, and com-
pute the walking speed vA and vB using Eq. 4 with the previously computed free-
stream velocity.

4. Finally, using Eq. 2 we compute the cost function associated to each path, and
determine the routing choice via Eq. 1.

At this stage, we can compare the routing choice performed by pedestrians with those
predicted by the model. In Fig. 3 we show the probability of taking path A, as a function of
the global pedestrian count N = NA +NB. The blue curve represents the results obtained
implementing the routing policy based on the minimization of the traveling time. The
analysis clearly shows that in the range 4 < N < 20 the model strongly departs from
the experimental data, suggesting that within this range pedestrians do not manage to
optimize their traveling time; this is consistent with other studies which have discussed
cases in which route choice can be affected by several factors other than minimization of
path length or traveling time [7, 24, 25].

By comparing the experimental data with the model we observe that pedestrians seem
to intentionally avoid taking path B even if in most cases it would represent a better
choice, in terms of traveling time, over path A. We can partially explain this behaviour
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Figure 3 Probability of choosing path A as a function of the global pedestrian count N. Black dots rep-
resent experimental data. Dotted lines represent numerical results from the routing model (see
text for full details). The blue line refers to a routing policy based on the minimization of the
traveling time. The orange line refers to a model including the penalty term in Eq. 3 with pa-
rameters a = 0.2, s = 20 and n0 = 0.2. Finally, the green line refers to a model using the same
parameters as the previous case, except for a stochastic term n0 ∼N (0.2,0.15); we show the
average results out of 100 repetitions.

with the fact that path B presents a curvature and partially overlaps with a bicycle lane,
which could make pedestrians hesitant from walking across it, especially if no one else
does so.

In order to capture this herding effect, we consider again the routing model with the
cost function given by Eq. 2, this time including the penalty function in Eq. 3. We apply
the penalty function only to the cost function of path B (i.e. fA = 1).

In Fig. 3, the orange line represents the results obtained by applying a penalty to the
cost function of path B using the parameters a = 0.2, s = 20 and n0 = 0.2. The model is
in good agreement with the experimental data, and shows that it is possible to explain the
choice performed by pedestrians by overestimating the cost of traveling along path B.

Finally, in Fig. 3 we show also the results obtained by introducing fluctuations in the
penalty function. The aim is to allow for subjective variability in the perception of the
herding effect. We consider the same parameters as in the previous case, but this time
n0 is drawn from a normal distribution n0 ∼ N (mean = 0.2,std = 0.15). The results
are represented by the green curve, which provides a better description of the data as we
transition from low to higher density values.
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4 Conclusions

In this work we have presented a simple routing model in which pedestrians select the
path associated to the estimated minimal traveling time. The traveling time is in turn
adjusted by a penalty function, which allows the description of herding effects.

We have tested and calibrated the model using experimental data consisting of a large
dataset of trajectories from a unidirectional pedestrian flow confronted with a binary
choice within an asymmetric domain.

The model shows that in our study-case pedestrians do not manage to optimize their
traveling time, despite the simplicity of the setup. Besides, the model allows to properly
capture the routing choices performed by pedestrians as the penalty function is introduced
and its parameters calibrated. We shall point out that we have performed only a coarse
scan in a limited search space of the parameters of the penalty function, since its opti-
mization was not a central aspect in the present work.

In the future it will be interesting to define strategies for tuning these parameters from
the data, using, e.g., machine-learning techniques, and comparing with different experi-
mental setups.
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