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Abstract Road traffic flow models allow the development and testing of intelligent trans-
portation solutions. Macroscopic intersection models are especially relevant for the sim-
ulation of large traffic networks. In this article, we study four first-order signalized
and unsignalized intersection models. The two unsignalized approaches are the first-
in-first-out (FIFO) model (roundabout-type intersection) and an optimal non-FIFO model
(highway-type intersection). The optimal control operates upstream for the first signal-
ized intersection model. It occurs downstream for the second signalized model. All four
models satisfy the expected physical constraints of vehicle conservation, traffic demand,
and assignment. The models are minimal and allow a comprehensible analysis of the
results. We determine mathematical relationships between the intersection models and
empirically analyze the performances using Monte Carlo simulations. The numerical
simulations assume random demand, supply, and assignment. Besides average perfor-
mances, the approach accounts for the flow ranges of variation. A benchmark analysis
compares the intersection models. We observe that the optimal signalized intersection
models overcome the performances of the FIFO model in congested states. They may
even reach the performances of the idealistic non-FIFO model. Further applications for
the four intersection models are discussed.
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1 Introduction

Road traffic flows are complex systems of interaction agents. Modelling traffic flow is
a challenging task, especially for intersections. Three families of continuous time road
traffic models has been identified in the literature [1, 2]:

1. Microscopic models describing the trajectory of each vehicle individually using
first or second order ordinary differential equations for the vehicle position, speed
or acceleration.

2. Kinetic (mesoscopic) models by hyperbolic partial differential equation of first or-
der for the distribution of the traffic performances. They are defined in analogy with
statistical physics.

3. Macroscopic models based on hyperbolic or parabolic conservation laws for av-
eraged traffic performance. Macroscopic models are mainly borrowed from fluid
mechanics.

The major advantage of macroscopic models is their tractable mathematical structure,
their low number of parameters, and their fast computational properties [3]. Several au-
thors propose network traffic models including dynamics at intersections [4–7]. Macro-
scopic road traffic intersection models are flow functions. They depend on the traffic
upstream (demand), the traffic downstream (supply), and the flow composition by direc-
tion [8]. The models are constrained by conservation laws. One of the main macroscopic
road traffic models for unsignalized intersections are the First-In-First-Out (FIFO) model
and non-FIFO model (optimal model), among [4, 9, 10]. FIFO models assume constant
the flow composition over the intersection [4]. This makes the flows on the incoming
and outgoing roads strongly inter-dependent. It corresponds to the situation where all in-
tersecting vehicles share a common section without overtaking possibilities, like, e.g., a
roundabout.

Non-FIFO models suppose independent flows by direction making the performance
more efficient than the FIFO model in case of congestion [9, 10]. The situation for non-
FIFO models corresponds to highway traffic intersection for which there exist specific
roads by destination. Analysing the difference of FIFO and non-FIFO approaches is the
topic of many research works [9–11]. Signalized intersection models include traffic lights
and priority rules [5, 12–14]. They mainly rely on optimisation problems for the traffic
light phase. Many recent solutions are based on deep reinforcement learning techniques
[15–21] or again ARIMA processes [22].

Intersection models are combinations of merging, when several roads converge to a
single one, and diverging models, when a single road is distributed over several outgoing
roads [23]. The intersections are typically point-wise in macroscopic models, i.e., the
intersection is reduced to a point without any physical dimensions. Intersection models
are generally embedded in dynamic network loading (DNL) models to simulate the traffic
on networks. The cell transmission model [4] and link transmission model [24] are for
instance well-established discrete approaches based on FIFO intersection models.
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Non-FIFO FIFO Control 1 Control 2

Figure 1 Illustrative scheme for the four types of intersection: Non-FIFO (optimal), FIFO, and the two
regulated models with control on the incoming roads and on the outgoing roads, respectively.

In this contribution, we analyse and compare mathematically and by simulation four
minimal signalized and unsignalized macroscopic intersection models of the first order
(see Fig. 1). The objective is to provide a comprehensible benchmark analyse of differ-
ent intersection models. The two unregulated models are the FIFO model with common
crossing section and the optimal model for which exist distinct roads by direction. The
control (i.e., traffic light) operates upstream on the incoming roads for the first regulated
intersection model, while the control takes place downstream on the directions for the
second regulated model. We demonstrate mathematical relationships between the inter-
section models and analyze the performances using Monte Carlo simulations.

The contribution is organised as follows. We review general physical constraints op-
erating in intersection models in Sec. 2. We define the four signalized and unsignalized
intersection models and provide some of their main properties in Sec. 3. We present
simulation results in Sec. 4. Some conclusion and discussion are given in Sec. 5.

2 Physical constraints

According to [5], the conditions that first-order macroscopic intersection models in dy-
namic network loading must conform to:

1. General applicability to any number of incoming and outgoing roads.

2. Non-negativity of the flow.

3. Conservation of vehicles.

4. Compliance with demand and supply constraints.

5. Flow maximisation from the user perspective.

6. Conservation of turning fractions.

7. Compliance with the invariance principle [8].
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In addition to the physical constraints, we introduce the main variables for a point-wise
intersection, which we use in the following to describe the system (see Fig. 2):

• α and β : the demand upstream and the supply downstream.

• ω and σ : the flows on the incoming roads and the outgoing roads.

• p : The assignment proportion of the demand by direction (route choice).

• q : Some priority rules (control).

• J : The total flow.

It holds for a n×m intersection: α,ω ∈ Rn
+, β ,σ ∈ Rm

+, and p ∈ Mn×m
+ with

m

∑
j=1

pi j = 1, for all i ∈ {1, . . . ,n}. (1)

α βω σ

J

q

p

Figure 2 Notations for a point-wise intersection. α and β are the demand upstream and the supply down-
stream; ω and σ are the flows on the incoming roads and on the outgoing roads; p is the assign-
ment of the demand by direction (route choice); q are some priority rules; J is the total flow.

An intersection model is a function specifying the incoming and outgoing flows ac-
cording to the demand, supply, assignment by direction, and priority rules:

(ω,σ) = F : (α,β , p,q) 7→ F(α,β , p,q).

The fundamental physical constraints operating in point-wise intersection models are (see,
e.g., [9, 10]):

(a) Flow (or vehicle) conservation (Kirchhoff’s law):

J =
n

∑
i=1

ωi =
m

∑
j=1

σ j. (2)

(b) Flows positive and bounded by demand and supply:

∀i ∈ {1, . . . ,n}, 0 ≤ ωi ≤ αi, (3)

and
∀ j ∈ {1, . . . ,m}, 0 ≤ σ j ≤ β j. (4)
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(c) Assignment by direction:

i. Conserved flow assignment proportion

∀ j ∈ {1, . . . ,m}, σ j =
n

∑
i=1

pi jωi. (5)

ii. Assignment constrained by the demand only

∀ j ∈ {1, . . . ,m}, σ j ≤
n

∑
i=1

pi jαi. (6)

The constraint (c) i. holds for FIFO models, while the more general constraint (c) ii. holds
for non-FIFO models.

3 Unsignalized and signalized intersection models

3.1 Unsignalized intersection models

Many types of traffic intersections have been referred to as unsignalized or again unreg-
ulated. These include intersections with two-way stop control, intersections with all-way
stop signage, or roundabouts [25]. In this section, we define two unregulated models,
namely, the FIFO (First-in-First-out) model and a non-FIFO (optimal) model.

3.1.1 FIFO model

The vehicles are not able to overtake in FIFO models: the first vehicle going in the inter-
section is the first out. Consequently, the flow composition is conserved [4]. At diverging
junctions, congestion on one outgoing road may impede the traffic on the other roads.
Indeed, the flows are proportional and interdependent.

The FIFO model reads

ωi = κ αi, i ∈ {1, . . . ,n},

σ j = κ

n

∑
i=1

pi jαi, j ∈ {1, . . . ,m},

JF = κ

n

∑
i=1

αi,

(7)

with

κ = min
{

1, min
j∈{1,...,m}

β j
n

∑
i=1

pi jαi

}

the proportion coefficient of the FIFO model.
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3.1.2 Non-FIFO model

We assume for the non-FIFO model (or optimal model) that there exist distinct roads by
direction [9]. Such an idealistic situation induces independence of the outgoing flow. It
may correspond to large intersections on highways.

The non-FIFO model is:

ωi = min{αi,γ} i ∈ {1, . . . ,n},

σ j = min
{ n

∑
i=1

pi jαi,β j

}
, j ∈ {1, . . . ,m},

JNF =
m

∑
j=1

σ j.

(8)

Here γ is the solution of
n

∑
i=1

min{αi,γ}= JNF. (9)

Note that

γ ≥ max
i∈{1,...,n}

αi if JNF =
n

∑
i=1

αi (free state),

while γ , by continuity and monotony, has a unique solution in

γ ∈
[
JNF/n, max

i∈{1,...,n}
αi
[

if JNF <
n

∑
i=1

αi (congested state).

We have for instance

γ = max
{

JNF/2, JNF −α1, JNF −α2
}

for a 2 × 1 converging congested intersection for which JNF < α1 + α2 [10]. In fact,
assuming α1 < α2 without loss of generality, then γ = JNF −α1 and the congestion only
affects the second incoming road if α1 < JNF/2, while γ = JNF/2 and the congestion
affects both incoming roads if α1 > JNF/2.

An illustrative comparison for FIFO and non-FIFO models is presented Fig. 3 with a
1×2 diverging intersection.

3.1.3 Properties of the FIFO and non-FIFO intersection models

The demonstrations of the following propositions are straightforward.

Proposition 3.1. The FIFO model Eq. 7 satisfies the constraints (2), (3), (4), and (5).

Proof. • Constraint (2). We have by definition

n

∑
i=1

ωi = κ

n

∑
i=1

αi =: JF,
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FIFO model

α

β1

β2

min{β1,β2}

min{β1 ,β2}

2min{β1,β2}

Non-FIFO model

α

β1

β2

β1

β2

β1 +β2

Figure 3 Illustrative comparison for FIFO and non-FIFO models on a 1× 2 diverging intersection with
p = (0.5,0.5) and α ≥ 2min{β1,β2} (FIFO model, left panel) or α ≥ β1+β2 (non-FIFO model,
right panel).

while
m

∑
j=1

σ j =
m

∑
j=1

κ

n

∑
i=1

pi jαi = κ

n

∑
i=1

αi

m

∑
j=1

pi j︸ ︷︷ ︸
=1

= κ

n

∑
i=1

αi =: JF.

Therefore

JF =
n

∑
i=1

ωi =
m

∑
j=1

σ j

i.e., (2) holds.

• Constraints (3) and (4). On one hand, we have directly for any incoming road
i ∈ {1, . . . ,n}

0 ≤ ωi = min
{

αi,min
k

αiβk
n

∑
i=1

pikαi

}
≤ αi,

i.e., (3) holds. On the other hand, we have for any outgoing road j ∈ {1, . . . ,m}

0 ≤ σ j = min
{

αi,min
k

βk
n

∑
i=1

pikαi

} n

∑
i=1

pi jαi ≤
β j

n

∑
i=1

pi jαi

n

∑
i=1

pi jαi = β j,

i.e., (4) holds.

• Constraint (5). The assignment composition conservation (5) comes trivially from
the definition of the FIFO model Eq. 7:

n

∑
i=1

pi jωi =
n

∑
i=1

pi jκαi = κ

n

∑
i=1

pi jαi =: σ j.
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Proposition 3.2. The non-FIFO intersection model Eq. 8 satisfies the constraints (2), (3),
(4), and (6).

Proof. • Constraint (2). We have by definition, see (8),

m

∑
j=1

σ j =: JNF,

while from (9) we obtain directly

n

∑
i=1

ωi =
n

∑
i=1

min{αi,γ}=: JNF.

Therefore

JNF =
n

∑
i=1

ωi =
m

∑
j=1

σ j

i.e., (2) holds.

• Constraints (3) and (4). We have directly for any incoming road i ∈ {1, . . . ,n}

0 ≤ ωi = min{αi,γ} ≤ αi,

i.e., (3) holds. The same holds for any outgoing road j ∈ {1, . . . ,m}

0 ≤ σ j = min
{ n

∑
i=1

pi jαi,β j
}
≤ β j,

i.e., (4) holds.

• Constraint (5). The last constraint (5) is straightforward

σ j = min
{ n

∑
i=1

pi jαi,β j
}
≤

n

∑
i=1

pi jαi.

Proposition 3.3. The FIFO intersection model Eq. 7 ensures conservation of the flow
composition.

Proof. Let us define the assignment proportion by direction p j using the demands αi

p j =

n

∑
i=1

pi jαi

n

∑
i=1

αi

.
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It follows directly
n

∑
i=1

pi jωi

n

∑
i=1

ωi

=

n

∑
i=1

pi jκαi

n

∑
i=1

καi

=

n

∑
i=1

pi jαi

n

∑
i=1

αi

= p j,

while

σ j
m

∑
k=1

σk

=

κ

n

∑
i=1

pi jαi

m

∑
k=1

κ

n

∑
i=1

pikαi

=

n

∑
i=1

pi jαi

n

∑
i=1

αi

m

∑
k=1

pik

=

n

∑
i=1

pi jαi

n

∑
i=1

αi

= p j.

Therefore, the flow composition in terms of assignment proportion by direction is con-
served over the demands αi, the incoming flows ωi and the outgoing flows σ j.

Corollary 3.4. The flow composition is not conserved through the intersection with the
non-FIFO model Eq. 8.

Proof. As counter-example, we can see that the flow composition of the demand is not
equal to the flow composition on the incoming roads with the non-FIFO model Eq. 8 in a
congested state for which JNF < ∑

n
i=1 αi

n

∑
i=1

pi jαi

n

∑
i=1

αi

̸=

n

∑
i=1

pi jωi

n

∑
i=1

ωi
=

n

∑
i=1

pi j min{αi,γ}

n

∑
i=1

min{αi,γ}

since it exists necessary i0 such that ωi0 = γ < αi0 if JNF = ∑
n
i=1 ωi < ∑

n
i=1 αi.

Proposition 3.5. The non-FIFO model systematically outperforms the FIFO model.

Proof. We have by definition of the FIFO and non-FIFO intersection models Eqs. 7 and 8

JNF =
m

∑
k=1

min{pk

n

∑
i=1

αi,βk}

=
m

∑
k=1

pk min{
n

∑
i=1

αi,βk/pk}

≥
m

∑
k=1

pk min
j
{

n

∑
i=1

αi,β j/p j}

= min
j
{

n

∑
i=1

αi,β j/p j} = JF.
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Proposition 3.6. The FIFO and non-FIFO models have identical free traffic states

JF =
n

∑
i=1

αi ⇔ JNF =
n

∑
i=1

αi.

Proof. We have first

JF =
n

∑
i=1

αi ⇒ κ = 1 ⇒ ∀ j ∈ {1, . . . ,m}, β j ≥
n

∑
i=1

pi jαi ⇒

JNF =
m

∑
j=1

min
{ n

∑
i=1

pi jαi,β j
}
=

m

∑
j=1

n

∑
i=1

pi jαi =
n

∑
i=1

αi.

The reciprocal is straightforward

JNF =
n

∑
i=1

αi ⇒ ∀ j ∈ {1, . . . ,m}, β j ≥
n

∑
i=1

pi jαi ⇒ κ = 1 ⇒ JF =
n

∑
i=1

αi.

3.2 Signalized intersection models

We consider intersections regulated by priority rules (i.e., traffic lights). We design by
lack of simplicity the priorities using coefficients [26, 27]

0 ≤ qin
i ,q

out
j ≤ 1 ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m},

n

∑
i=1

qin
i =

m

∑
j=1

qout
j = 1.

Such a continuum approximation allows obtaining understandable results. It takes how-
ever not account for the phase of the traffic lights [28]. Note that assuming strict priorities
such that ∑

n
i=1 qin

i = ∑
m
j=1 qout

j = 1 allows avoiding conflict for crossing flows. Two op-
timal control intersection models are investigated. The control operates on the outgoing
roads for the first model while the regulation is done on the incoming roads for the second
model (see Fig. 4).

Control 1

qout

Control 2

qin

Figure 4 Illustrative scheme for the first signalized model Eq. 10 for which the control operates on the
outgoing roads (left panel) and for the second signalized model Eq. 11 for which the regulation
operates on the incoming roads (right panel).



Benchmarking Road Traffic Intersection Models 11

3.2.1 Priorities by direction

In the first signalized model, the control operates on the outgoing roads, i.e., on the direc-
tions (see Fig. 4, left panel). The first signalized intersection model reads

ωi = min{αi,γ}, i ∈ {1, . . . ,n},

σ j = min
{ n

∑
i=1

pi jαi,qout
j C,β j

}
, j ∈ {1, . . . ,m},

JC1 =
m

∑
j=1

σ j.

(10)

Here C > 0 is the road capacity, which, for simplicity, we assume to be the same for each
incoming and outgoing road, while the number γ , as in the non-FIFO model Eq. 8, is such
that

n

∑
i=1

min
{

αi,γ
}
= JC1.

3.2.2 Priorities on the incoming roads

The control operates on the incoming roads for the second signalized model (see Fig. 4,
right panel). This second signalized intersection model is given by

ωi = min{qin
i C,αi,γ} i ∈ {1, . . . ,n},

σ j = min
{ n

∑
i=1

pi j min{qin
i C,αi},β j

}
j ∈ {1, . . . ,m},

JC2 =
m

∑
j=1

σ j

(11)

Here γ is such that
n

∑
i=1

min{qin
i C,αi,γ}= JC2,

i.e.,

γ ≥ max
i∈{1,...,n}

min{qin
i C,αi} if JC2 =

n

∑
i=1

min{qin
i C,αi}, (free state),

while γ , by continuity and monotony, has a unique solution in

γ ∈ [JC2/n, max
i∈{1,...,n}

min{qin
i C,αi}[, if JC2 <

n

∑
i=1

min{qin
i C,αi} (congested state).

Remark 1. Both models are non-FIFO by construction, i.e. flows are not proportional
and flow composition is not conserved.

Remark 2. Assuming C ≥ max
{

∑
n
i=1 αi,β1, . . . ,βn

}
, the two special cases qin

i = 1 for all
i ∈ {1, . . . ,n} in the first signalized model Eq. 10 and qout

j = 1 for all j ∈ {1, . . . ,m} in the
second signalized model Eq. 11 correspond to the non-FIFO model Eq. 8.
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3.2.3 Properties of the signalized intersection models

The proofs of the following propositions are straightforward.

Proposition 3.7. If we assume that the priority rules are strict, i.e.,

n

∑
i=1

qin
i =

m

∑
j=1

qout
j = 1,

then
max{JC1,JC2} ≤C,

i.e. the regulated intersection models only allow the streaming of a single road (exclusive
green phase of the traffic light).

Proof. We have

JC1 =
m

∑
j=1

min
{ n

∑
i=1

pi jαi,qout
j C,β j

}
≤

m

∑
j=1

qout
j C ≤C

and

JC2 =
m

∑
j=1

min
{ n

∑
i=1

pi j min{qin
i C,αi},β j

}
≤

m

∑
j=1

n

∑
i=1

pi jqin
i C =

n

∑
i=1

qin
i C

m

∑
j=1

pi j =C

So we have
max{JC1,JC2} ≤C.

Proposition 3.8. The non-FIFO model Eq. 8 overcomes the performances of the regulated
models Eq. 10 and Eq. 11:

max{JC1,JC2} ≤ JNF.

Proof. We have directly

JC1 =
m

∑
j=1

min
{ n

∑
i=1

pi jαi,qin
i C,β j

}
≤ JNF

m

∑
j=1

min
{ n

∑
i=1

pi jαi,β j
}
,

and

JC2 =
m

∑
j=1

min
{ n

∑
i=1

pi j min{qin
i C,αi},β j

}
≤ JNF

m

∑
j=1

min
{ n

∑
i=1

pi jαi,β j
}

Therefore
max{JC1,JC2} ≤ JNF

holds
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Proposition 3.9. If one or both of the two regulated models Eq. 10 and 11 describe a free
traffic states with no congestion (I.e., the total flow is the sum of the demands), then the
FIFO and non-FIFO Eq. 7 and 8 also describe a free traffic

JC1 = JC2 =
n

∑
i=1

αi ⇒ JF = JNF =
n

∑
i=1

αi.

The reciprocal is false.

Proof. Both equalities

JC1 =
m

∑
j=1

min
{ n

∑
i=1

pi jαi,qout
j C,β j

}
=

n

∑
i=1

αi

or

JC2 =
m

∑
j=1

min
{ n

∑
i=1

pi j min{qin
i C,αi},β j

}
=

n

∑
i=1

αi

implies that
n

∑
i=1

pi jαi ≤ β j for any j ∈ {1, . . . ,m}.

So we obtain

JNF =
m

∑
j=1

min
{ n

∑
i=1

pi jαi,β j
}
=

n

∑
i=1

αi

as well. Moreover, we observe in Prop. 3.6 that JF = ∑
n
i=1 αi and JNF = ∑

n
i=1 αi are equiv-

alent. This completes the proof of the first part of the proposition.
It is enough to choose a particular signalling such as ∑

m
j=1 pi jαi ≥ qout

j C (model Eq. 10)
or αi ≥ qin

i C (model Eq. 11) to see that the reciprocal is false.

4 Simulation analysis

4.1 Setting up the simulations

We realise 1e6 Monte Carlo simulations for a 2×2 intersection assuming random demand,
supply, and direction assignments. The four roads have identical capacity C > 0. The
demands on the two incoming roads α1 and α2 and the two supplies β1 and β2 on the
outgoing roads are uniformly distributed on [0,C] and independent. The vehicles are
randomly affected to the two destinations with probability p ∈]0,1[, i.e.,

p11 = p21 = p, p12 = p22 = 1− p

The four models for a 2×2 intersection are:

• Unsignalized models
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– FIFO model Eq. 7

JF = min
{

α1 +α2,β1/p,β2/(1− p)
}
. (12)

– Non-FIFO model Eq. 8

JNF = min
{

p(α1 +α2),β1
}
+min

{
(1− p)(α1 +α2),β2

}
. (13)

• Optimal signalized models with q̃1, q̃2 ∈ [0,1]2 the optimal priority control such that

q̃k = arg max
q∈[0,1]

JCk(q), k = 1,2,

– First signalized model Eq. 10

JC1(q̃1) = min
{

p(α1+α2), q̃1C,β1
}
+min

{
(1− p)(α1+α2),(1− q̃1)C,β2

}
. (14)

– Second signalized model Eq. 11

JC2(q̃2) = min
{

p
[

min{q̃2C,α1}+min{(1− q̃2)C,α2}
]
,β1

}
+ min

{
(1− p)

[
min{q̃2C,α1}+min{(1− q̃2)C,α2}

]
,β2

}
.

(15)

The existence of the optimal priority control hold thanks to the extreme value theo-
rem, the flow functions JC1 and JC2 being real-value and continuous.

The simulations are carried out with the R software. The optimisation of the priority
coefficient in the signalized models Eq. 14 and Eq. 15 is done numerically using the
function optimwith the ”L-BFGS-B” method, that is a quasi-Newton approach allowing
box constraints [29]. The R code allowing to compute the data is publicly available online
at the following Jupyter/Colab project.

4.2 Simulation results

The stochastic approach allows accounting for the average performances and their range
of variation. Indeed, reliable intersections should describe ”regular” performances (i.e.,
with small variations) [30,31]. The mean flow and standard deviation of the Monte Carlo
simulations for the four intersection models are given in Tab. 1. We observe that the
optimal unsignalized intersection model Eq. 13 overcome the performances of the FIFO
model Eq. 12 on average by a factor of approximately 25%, when the regulated models
C1 Eq. 14 and C2 Eq. 15 are, respectively, 4 and 7% smaller. The differences between
FIFO and non-FIFO models are especially high for congested states (up to 35%), i.e.,
when the total flow is strictly smaller than the sum of the demands.

Generally speaking, the FIFO model describes poor performances in case of conges-
tion, while the non-FIFO and the two signalized models perform similarly in case of free
or congested traffic. The variability of the flow is significantly smaller with the two sig-
nalized models compared to the unsignalized models, with a factor up to 25%. This is

https://colab.research.google.com/drive/1OfCsdEU4OMrTZR61VP7jq97jmWIHoL3W?usp=sharing
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Table 1 Mean flow and standard deviation of the Monte Carlo simulations for the four intersection models:
FIFO JF Eq. 12, non-FIFO JNF Eq. 13, and the two regulated models JC1 Eq. 14 and JC2 Eq. 15 in
capacity unit C. The traffic state is free if JNF = ∑

n
i=1 αi and congested if JNF < ∑

n
i=1 αi.

Flow model JF JNF JC1 JC2

Mean value 0.519 0.648 0.624 0.603
Standard deviation 0.338 0.313 0.271 0.262

Free state Mean value 0.656 0.656 0.632 0.632
Standard deviation 0.314 0.314 0.273 0.273

Congested state Mean value 0.473 0.646 0.622 0.594
Standard deviation 0.333 0.312 0.270 0.257

mainly due to the fact that the total flow in the two signalized models Eq. 14 and Eq. 15
are bounded by the capacity C of a single road. Scatter plots for 1e3 flow simulations
of the 2× 2 intersection are presented in Fig. 5. The histograms of the optimal priority
coefficient q̃1 and q̃2 for the regulated models Eq. 14 and erefC2n are presented Fig. 6
and 7, respectively. Most of the optimum are reached at equilibrium q̃ = 0.5 (respectively
65% of the cases for the model Eq. 14 and 55% for the model Eq. 15). The concentration
of the results on q̃1 = 0.5 or q̃2 = 0.5 corresponds to congested cases for which JC1 = C
or JC2 = C. As the capacity of the intersection is that of a single road, these cases are
over-represented. The distributions around these modal values describe nontrivial shapes
for both signalized models (see the subplots in Figs. 6 and 7).

4.3 Empirical properties of the four intersection models observed by
simulation

Several empirical properties of the four intersection models can be picked up from the
simulation results.

• Regarding FIFO Eq. 12 and non-FIFO Eq. 13 models:

JF ≤ JNF ≤C+ JF/2.

• Regarding the two regulated models, Eq. 14 and Eq. 15,

JC2 ≤ JC1 ≤ 2JC2.

• Regarding the unregulated and regulated models:

JC1 = min{JNF,C}, JC2 ≤ JNF ≤ 2JC2,

and
min{JF,C} ≤ min{JC1,JC2}.
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Figure 5 Scatter plots for 1e3 flow simulations for random demand, supply and assignment on a 2× 2
intersection with FIFO Eq. 12, non-FIFO Eq. 13, and the two regulated models Control 1 and
Control 2 Eqs. 14 and 15, respectively.
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Figure 6 Histogram of the optimal priority coefficient q̃1 for the first regulated model Eq. 14. The sub-
plot top-right presents the distribution without the modal value q̃1 = 0.5.
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Figure 7 Histogram of the optimal priority coefficient q̃2 for the second regulated model Eq. 15. The
sub-plot top-right presents the distribution without the modal value q̃2 = 0.5.

5 Conclusion and discussion

The four minimal pointwise intersection models developed in this article cover different
types of dynamics, namely FIFO, non-FIFO (optimal) and optimal signalized intersection
models. They can be coupled with macroscopic flow models for modelling traffic net-
works. The intersection models provide boundary conditions for the flow models of the
network links, which can be continuous macroscopic models through systems of partial
differential equations, like the classical first-order Lighthill-Whitham-Richards models
[32,33], or discrete lattice models such as the cell transmission model [4] and its stochas-
tic variant as in [34].

The main characteristics of the four intersection models are summarised in Tab. 2.
The FIFO intersection model is not efficient in case of congestion. The performances of
the two optimal signalized models are close to the flow of the idealistic non-FIFO model.
They ensure strict priority by bounding the total flow to the capacity of a single road. This
makes the optimal signalized approach more relevant regulation strategy than the FIFO
regulation. More complex intersections including more than two incoming or outgoing
roads could reveal different behaviors and remain to be investigated.

The optimal traffic light systems overcome the performance of a roundabout-type in-
tersection in case of congestion. The main drawbacks of signalized systems arise in free
state, where no regulations are required. These results suggest the development of a
roundabout with dynamic traffic lights operating exclusively in case of congestion. Such
regulation systems remain to be tested and validated using microscopic traffic models.
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Table 2 Qualitative evaluation of the four intersection models: FIFO (F) Eq. 7, non-FIFO (NF) Eq. 8,
regulation on the outgoing roads (C1) Eq. 10, and regulation on the incoming roads (C2) Eq. 11.

Model F NF C1 C2

Free state ++ ++ + +

Congested state − ++ ++ +

Variability − − + +
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