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Abstract In recent years, research on mathematical models describing crowd dynamics
has become increasingly important. Among this research, a two-dimensional mathemat-
ical model with the effect of body rotation describing bidirectional flows has been con-
structed, and its fundamental diagram has been shown to be qualitatively consistent with
real experimental data from the perspective of flow rate inversion. However, this property
has not been mentioned in one-dimensional mathematical models. In this paper, we intro-
duce a new, simpler, one-dimensional cellular automaton model to focus on the direction
of particles and the effects of mutual anticipation and flipping instead of body rotation
by extending the well-known TASEP as a solvable lattice model. Our model was found
to be qualitatively consistent with the actual phenomenon of flow rate inversion, both
numerically and theoretically.
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1 Introduction

In recent years, research on mathematical models describing crowd dynamics has become
increasingly important. On the other hand, various findings have been obtained not only
from mathematical models but also from real experiments [1]. For instance, experiments
on unidirectional and bidirectional flow in crowds showed that the flow rate in unidirec-
tional flow is higher than that in bidirectional flow in a certain density region. However,
beyond the density region, a reversal occurred in which the bidirectional flow exhibited
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Figure 1 Illustration of each probability. (a) The particles remain the same from the initial direction. (b)
Essentially, each particle hops with probability q. (c) If they are facing each other, two particles
would swap places with probability r. (d) If the space between two particles facing each other
is empty, one will hop with probability s.

a higher flow rate compared to the unidirectional flow [2]. While there are some one-
dimensional cellular automaton models [3, 4] that represent bidirectional flows, none of
them analytically show the reversal of flow. In this paper, the inversion in the flow rate
is explained using a simpler one-dimensional cellular automaton model incorporating ef-
fects such as body rotation and mutual anticipation known from experiments. Our simpler
model contributes to the understanding of flow rate inversion, both numerically and ana-
lytically.

The remainder of this paper is organized as follows. The next section presents a pedes-
trian model described as a partial difference equation, which corresponds to a cellular
automaton in a special case. In addition, we compared the numerical and analytical re-
sults of the model and revealed an inversion in the flow rate. Finally, conclusions are
presented in Section 3.

2 New mathematical model

2.1 Model

In this paper, we first introduce a new simpler one-dimensional cellular automaton model
by focusing on the direction of particles and the effect of flipping instead of body rotation
by extending the well-known Totally Asymmetric Simple Exclusion Process (TASEP) as
a solvable lattice model. As shown in Fig. 1, each particle constantly moves to either side
(Fig. 1(a)) and hops to the cell in front with probability q ∈ [0,1] (Fig. 1(b)) if the cell
in front is vacant. The probability-determining directions cause two patterns that cannot
occur in ASEP: First, if one particle is facing a neighboring particle, the particles flip
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Figure 2 Conceptual diagram of our model.

with probability r (Fig. 1(c)). Second, if the neighboring cell in the direction of the hop is
empty but there is a particle one cell further ahead facing it, one of the particles hops with
probability s (Fig. 1(d)); this is based on an analogy with the introduction of a friction
parameter [5]. In this study, we set r = q2 ∈ [0,1],s = q(1−q) ∈ [0,0.25]. Note that the
setting r = q2 signifies that when two pedestrians are adjacent, facing each other, and both
attempt to move forward, they can do so successfully. More simply, it indicates that they
rotate their bodies (as mentioned in [6]) to avoid a collision and proceed. On the contrary,
the setting r = q(1−q) represents the scenario where pedestrians facing each other avoid
a collision through mutual anticipation [7]. This model is an extension of TASEP, and the
appearance of flips is consistent with the behavior of other physical models [3, 8].

We then represent this model using the equation shown in Fig. 2, where the particle ρ t
x

in a cell moves with transition rates at
x and bt

x; if ρ t
x = 1, there is a particle in the cell, and

if ρ t
x = 0, there is no particle. As the conservation law holds for particles moving between

cells, the following equation holds:

ρ
t+1
x = ρ

t
x − f t

xρ
t
xat

x − (1− f t
x)ρ

t
xbt

x + f t
x−1ρ

t
x−1at

x−1 +(1− f t
x+1)ρ

t
x+1bt

x+1 (1)

where f t
x is a variable representing direction; if it takes the value 1, it represents a par-

ticle facing rightward, and if it takes the value 0, it represents a particle facing leftward.
Because the direction is always constant at the initial value, for f t

x, which represents di-
rection, the following equation can be obtained:

f t+1
x =

f t
xρ t
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x)+ f t

x−1ρ t
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x

. (2)

By rearranging equation (Eq. 2) and setting rt
x = f t

xρ t
x, we obtain the following equation:

rt+1
x = rt

x(1−at
x)+ rt

x−1at
x−1. (3)

In addition, the transition rates at
x and bt

x are as follows:
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x+2)}

+(1−ρ
t
x+1)(ρ

t
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x
[
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x−2)+ρ
t
x−2(1−ρ

t
x−1)(1− ct

x−2)+ ct
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]
. (5)

ct
x is a random variable that determines whether a particle in a cell at (x, t) moves for-

ward; it takes value 1 with probability q; otherwise, it takes value 0. The first term in
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(a) (b) (c)

Figure 3 Simulation results of our model. All boundary conditions are periodic boundary conditions, and
the last 100 steps are taken from the 20,000 steps calculated. (a),(b), and (c) show the results for
q = 0.2,0.5, and 0.8, respectively.

parentheses on the right-hand sides of equations (Eq. 4) and (Eq. 5) represents the situa-
tion in Fig. 1(b). The second term represents the situation in Fig. 1(d), and the third term
represents the situation in Fig. 1(c). In the present model, we set the variable ρ t

x ∈ {0,1}
included in equations (Eq. 1), (Eq. 3), (Eq. 4), and (Eq. 5), but if we set ρ t

x ∈ [0,1], these
equations still hold.

2.2 Results

First, we performed numerical simulations to verify the solution. Specifically, simulations
were performed with the initial values ρ0

x = 1 and r0
x = 1 for x ∈ {0,1, . . . ,34}, ρ0

x = 0
and r0

x = 1 for x ∈ {65,66, . . . ,99}, while ρ0
x = 0 and r0

x = 0 were set for the other spaces.
In Fig. 3, the model parameters were set to (a) q = 0.2, (b) q = 0.5, and (c) q = 0.8. In
addition, the boundary condition is periodic, and parallel updates are used for updating.
As shown in Fig. 3, the larger the value of the parameter q, the smaller the queue and the
more it is moving overall. To illustrate this, we consider a diagram called the fundamen-
tal diagram, which considers the density on the horizontal axis and the flow rate on the
vertical axis. The purpose of our proposed model is to present analytically determining
the flow rate and show the flow reversal phenomena. Therefore, to obtain the fundamental
diagram theoretically, we consider the situations for four cells. For instance, consider the
transition probability matrix when the number of right-facing particles NR = 1 and num-
ber of left-facing particles NL = 1. The transition probability matrix representing the state
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transitions is as follows:

A =



P1 0 0 0 0 0 P2 0 P4 0 0 P4
0 P1 0 0 0 0 0 P2 P4 P4 0 0
0 0 p1 0 P2 0 0 0 0 P4 P4 0
0 0 0 P1 0 P2 0 0 0 0 P4 P4

P2 0 0 0 P3 0 0 0 0 0 0 0
0 P2 0 0 0 P3 0 0 0 0 0 0
0 0 P2 0 0 0 P3 0 0 0 0 0
0 0 0 P2 0 0 0 P3 0 0 0 0
0 0 0 0 0 0 P4 P4 P5 0 0 0
0 0 0 0 P4 0 0 P4 0 P5 0 0
0 0 0 0 P4 P4 0 0 0 0 P5 0
0 0 0 0 0 P4 P4 0 0 0 0 P5



(6)

where P1 = 1−q2,P2 = q2,P3 = (1−q)2,P4 = q(1−q), and P5 = 1−2q(1−q). Ap-
plying the Perron–Frobenius theorem to the irreducible transition probability matrix A,
it can be shown that the eigenvalue of the largest absolute value is 1, which is a simple
eigenvalue. Thus, the Markov chain defined by this matrix has a unique stationary distri-
bution. Therefore, the eigenvector corresponding to eigenvalue 1 is a constant multiple of
the stationary distribution. Then, the eigenvector is obtained as follows:(

2−q
q

,
2−q

q
,
2−q

q
,
2−q

q
,1,1,1,1,1,1,1,1

)
. (7)

Let us denote the absence of particles in a cell as 0, the presence of right-facing particles
as R, and the presence of left-facing particles as L. Then, the stationary distribution can
be expressed as follows:

P(00RL) = P(0RL0) = P(RL00) = P(L00R) =C
2−q

q
, (8)

P(00LR) = P(0LR0) = P(LR00) = P(R00L) =C, (9)
P(0R0L) = P(R0L0) = P(0L0R) = P(L0R0) =C, (10)

where C is the normalization constant. The flow rate Q can be calculated based on the
stationary distribution obtained here. Specifically, it is expressed as follows:

Q =
(# particles moved)× (Transition probability)× (Stationary distribution)

(Number of cells)
. (11)

To calculate the flow rate Q specifically for the case when NR = 1 and NL = 1, the nor-
malization constant C is determined that

C =
1

4× 2−q
q +8×1

=
q

8+4q
. (12)
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Figure 4 Fundamental diagrams. The red dots represent the fundamental diagram of TASEP, and the
green dots represent the fundamental diagram of our model. Large circles represent numerical
results, and dots represent theoretical results. It can be seen that the numerical and theoretical
results are in agreement, and moreover, they represent the flow reversal seen in real phenomena.

When substituting equation (Eq. 12) into equations (Eq. 8), (Eq. 9), and (Eq. 10), station-
ary distribution can be determined. When NR = 1 and NL = 1, the flow rate is denoted as
Q1,1, and it is determined that

Q1,1 =

(
2×q2 × q

8+4q
× 2−q

q
× 1

4

)
×4+

(
2×q2 × q

8+4q
×1× 1

4

)
×4

+

(
1×2q(1−q)× q

8+4q
×1× 1

4

)
×4+2×

(
1×q(1−q)× q

8+4q
×1× 1

4

)
×4

=
q2(2−q)

2+q
. (13)

These calculations were performed from N = 0 to N = 4, and the results compared through
simulations are shown in Fig. 4. The green and red dots represent bidirectional and uni-
directional flow, respectively. Fig. 4 shows that some particles can move in bidirectional
flows when the density ρ = 1.0. Such behavior arises because the particles facing each
other can move forward with probability r = q2. This result is natural in the model set-
ting. This result is natural in the model setting. In addition, there are two flow rates when
the density is 1.0; these two points at ρ = 1.0 are because the flow rate varies with the
number of people coming from the left and right. In a bidirectional flow, the model illus-
trates that the flow rate fluctuates based on the disparity in the number of people coming
from each direction. More precisely, the flow rate is higher when the ratio of rightward to
leftward particles is equal (NL = NR), and it is lower when the ratio is skewed (NL > NR
or NL < NR). Fig. 4 shows that the actual theoretical and simulation results, which can
describe the properties of flow inversion, as observed in the experiment [2].
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3 Conclusion

By extending TASEP to introduce particle direction and flips, we constructed a new one-
dimensional model that represents both directions in the human flow. Specifically, we
made particles keep moving in one of the directions and defined how they would behave
with probability in the event of a collision. Then, we constructively introduced the equa-
tions that represent such a model. In addition, we obtained the exact flow rates at some
finite number of cells to obtain an eigenvector corresponding to the eigenvalue 1. We
then showed the behavior of the times at which the flow rate was obtained by simulation.
Future studies will aim to determine the exact flow rate for an arbitrary number of cells.
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