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Abstract We recently proposed the “Congestion Number” (CN) as a metric to evaluate
the state of a pedestrian crowd. Such metric, whose definition is based on the gradient
of the rotor of the crowd velocity field, appears to provide additional information with
respect to traditional metrics based on pedestrian density and flow.

We also published two works on the dynamics of orthogonally crossing pedestrian
flows under different density regimes. In the first manuscript we analysed experimental
data by using traditional observables such as density, velocity and relative position be-
tween pedestrians, along with less explored ones such as body orientation. In the second
one we proposed a hierarchy of simulation models to reproduce the cross-flow dynamics,
and used the aforementioned observables to compare such models.

Based on theoretical considerations and analysis of real world data, we believe the
crossing flow setting to be a good arena to test the CN metric, and in this work we perform
a CN analysis on the empirical and simulation data. Results show that simulation models,
which reproduced almost perfectly the density time dependence of the pedestrian crowd,
“fail” to reproduce the CN one. Actually, models “outperform” the pedestrian crowd
when analysed using CN. These preliminary results suggest that the CN metric may
provide useful information not only in crowd assessment but also in model evaluation.
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1 Introduction

Due to the growth of human population and in particular urban centres in the last century
the problem of safely planning and managing human flows, including pedestrian ones,
has become of great interest and relevance [1–4]. Our ability of studying, reproducing
and predicting the dynamics of crowds has been obviously enhanced by new technolo-
gies that emerged starting from the second half of the 20th century [5]. In particular the
widespread use of numerical computing has made possible to simulate dynamical systems
with a large number of components, allowing for the development of crowd models [6,7].
Furthermore, it is now possible to track pedestrians in real time [8,9], and study large data
sets concerning pedestrian behaviour in real-world settings [10, 11].

Nevertheless, real time assessment of crowd condition is often still based on possibly
inadequate definitions using only crowd density such as the Level of Service (LOS) [12].
Crowd density is obviously extremely important, and the “fundamental diagram”, i.e. the
relation between crowd density and pedestrian velocity [13], is at the centre of research
on pedestrian crowds. Such relation is in general studied in evacuation settings, in which
all pedestrians share the same goal. Although the importance of such conditions is not
under debate, lately quantitative and theoretical studies have focused on settings in which
pedestrian flows cross at different angles [14], and an assessment metric that, while being
still relatively simple, is able to deal with such conditions, is needed.

Recently we have introduced some works in such direction: in [15] we proposed the
“Congestion Number” (CN)1 a metric defined using the gradient of the rotor of the crowd
velocity field, which showed to provide additional information with respect to traditional
metrics based on pedestrian density and flow. Furthermore, in [17,18] we analysed in de-
tail the dynamics of two orthogonally crossing pedestrian flows, and introduced numerical
models to reproduce it. In the following, after a short introduction to the aforementioned
works, we join them performing an analysis of cross-flows based on the CN.

2 CN

Extending the work of [19], in [15] we introduced the following metric in order to identify
“instabilities” in a crowd through the presence of spatially close but differently directed
“rotating movements”. In order to do that, we take in consideration the rotor of the crowd
velocity field2, or better its only non-zero component (orthogonal to the floor) (∇× v)z
and measure the absolute value of its gradient, that we name “Differential Congestion”

DC(x) = ||∇[(∇×v)z(x)]||. (1)

The fundamental idea is that such gradient measures how the (rotating) moving direc-
tion of the crowd changes, a higher DC representing a more unstable crowd.

1A different approach, more focused on microscopic dynamics, to identify a pure number describing the
state of the crowd was proposed in [16].

2The velocity field has to be defined through a proper discretisation scheme in space and time. The choice
of the discretisation scheme is an important but not trivial issue which is discussed at length in [15].
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In order to define our metric as a pure number, DC is divided by a (very high) reference
value, i.e. an “Extreme Differential Congestion” EDC

CN(x) =
DC(x)

EDC(x)
. (2)

Through a series of approximations, whose purpose is to replace differential operators,
that depend strongly on discretisation schemes, with differences and averages, we reach
the following operational definition

CN(x)−
(maxR(x)(∇×v)z(x)−minR(x)(∇×v)z(x))RL

6 < v >R(x) L
, (3)

R(x) being a “Region Of Interest” centred on x.
We verified the following important properties of CN

1. It can differentiate between an organised crowd (low CN) and a not organised one
(high CN) regardless of density and velocity. For example, in a bi-directional flow,
when the opposite streams separate, we have no change in (global) density and little
change in velocity, but a considerable drop in CN.

2. In a real world environment (a portion of Shinjuku Station in Tokyo), high CN
areas are different than high-density ones, the former being located where flows
with different directions cross (or join).

3 Crossing flow dynamics

3.1 Experimental results

In [17] we analyse the results of a series of experiments, organised recruiting students as
participants, on the dynamics of two crossing flows. Although the number of subjects (56)
and the width of the corridors were fixed, by changing the size of the starting lanes we
were able to investigate six different starting lane density conditions, namely3 ρI = 0.25,
ρI = 0.5, ρI = 1, ρI = 1.5, ρI = 2 and ρI = 2.5 ped/m2. Trajectories were extracted using
the PeTrack software [20,21]. Furthermore, for a subset of 9 participants, it was possible
to measure also torso orientation by using the inbuilt gyroscope sensors of tablets which
were fixed to their body using a bib.

The state of the crowd and its dependence on starting lane density conditions were
analysed by studying the probability distributions of the following observables: pedes-
trian speed v, velocity direction angle θ v, body orientation angle θ , difference between
θ and θ v ∆θ , relative distance δ s and relative angle φ s between pedestrians in the same
flow, and relative distance δ o and relative angle φ o between pedestrians in different flows.
Furthermore, we analysed the time dependence of the global density in the crossing area
ρ(t). Our analysis confirmed the emergence of self-organising “stripes” in the crossing
area [14].

3Here with ρI we indicate the density corresponding to when the two flows are separated in the starting
areas, while the crossing area density ρ is time dependent and dynamically determined.
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3.2 Modelling

In [18], to which the reader is directed for further details, we tried to understand which
are the fundamental components of collision avoidance necessary to describe the ob-
served behaviour (i.e. to reproduce the observable probability distribution). The purpose
of this work was thus not to introduce a new, all-purpose pedestrian model, but to investi-
gate, inside a given framework (second order models) whether, to reproduce the observed
dynamics, it is necessary to:

1. introduce body asymmetry (i.e. using an elliptical body shape or a circular one)

2. introduce a collision avoidance process using explicitly body shape and size infor-
mation (short-range interaction) or if a model using only centre of mass position
and velocity (long-range interaction) would suffice4

These two conditions create a hierarchy of four models with increasing complexity.
The equations of motion for the most complex model read{

r̈ =−kvp(ṙ−vp)− kv
θ
(ṙ−∥r∥n)+(1−β (tc))Flong +β (tc)Fshort ,

θ̈ =−kω θ̇ − kω
θ

∆θ +β (tc)T short .
(4)

Here the vector r identifies the position of the pedestrian’s body centre (on the 2D
plane), the vector n the normal to the pedestrian’s chest (body orientation), and the angle
θ its orientation. Flong [22] and Fshort represent respectively the aforementioned long and
short interaction acceleration terms (T short being a torque due to the short range interac-
tion), tc is the time to the next collision and β satisfies{

limt→0 β (t) = 1,
limt→∞ β (t) = 0.

(5)

The constant kvp represents the tendency to move with a preferred velocity vp, kω to
stabilise body orientation, while kv

θ
and kω

θ
align velocity direction to body orientation

(∆θ being the angle between the velocity and body orientation vectors).
Circular body models are obtained by removing all terms related to θ and n, while

models using only long-range interaction are obtained by setting

β (t) = 1, ∀t.

We verified that the models using (also) Fshort reproduce better the empirical observ-
able distributions. On the other hand, the impact of using body orientation on models
using Fshort was very reduced (at least when comparing to the observed experimental set-
ting and using the very simplified proposed model of body shape). In particular, even
when evaluated on the highest density setting on which they had not been calibrated,
both models reproduced well the time evolution of density in the crossing area ρ(t) (as
shown in Fig. 1) and the probability distribution of speed P(v).

4The terms short/long range are here used somehow improperly, and they reflect the fact that detailed
information concerning body shape and size is needed only in the proximity of a collision.
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Figure 1 Time evolution of the average density ρ(t) in the crossing area. (a): initial density condition ρI =
1.5 ped/m2; (b): initial density condition ρI = 2.5 ped/m2. Red circles: experimental data; blue
up triangles: circular body model; green down triangles: elliptical body model. Dashed lines
show the standard error confidence values computed by treating different experiment repetitions
as independent. Refer to [17] for more details.

The models were also able to reproduce the relative angles probability distributions,
which are related to the stripe formation self-organisation pattern, although these observ-
ables were not used in the calibration process (see [18] for details).

4 CN analysis of cross-flow data

We ran a CN analysis on the cross-flow empirical and simulated data, using the same
code and parameters proposed in [15], and in detail we analysed the time evolution of the
average value of ⟨CN(t)⟩ in the crossing area (refer to [15] for more details).

The results concerning the initial density condition ρI = 1.5 ped/m2 (on which the
models were calibrated) and the initial density condition ρI = 2.5 ped/m2 (on which the
models were evaluated in [18]) are shown respectively in Fig. 2 (a) and (b).

The difference in ⟨CN(t)⟩ between empirical and simulation results is very clear, in
particular comparing to density (Fig. 1). Excluding the high t tail behaviour in the circular
model (agents using the circular model tend to spend a longer time in the environment
when compared to actual pedestrians and those using the elliptical model, [18]), models
always present a lower ⟨CN(t)⟩, and in the ρI = 2.5 ped/m2 we even have a sensible
difference between the models, with the circular one presenting the lower ⟨CN(t)⟩.

5 Discussion and conclusions

These very preliminary results hint again to the ability of the CN to provide an analysis
qualitatively different and complementary to the traditional methods based on density and
velocity. Nevertheless a clear interpretation of these specific results regarding cross-flow
dynamics is still missing and deserves future study. The main open issues are:
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Figure 2 Time evolution of the average value of ⟨CN(t)⟩ in the crossing area. (a): initial density condition
ρI = 1.5 ped/m2; (b): initial density condition ρI = 2.5 ped/m2. Red circles: experimental data;
blue up triangles: circular body model; green down triangles: elliptical body model. Dashed
lines show the standard error confidence values computed by treating different experiment rep-
etitions as independent. Refer to [15] for more details.

1. Why did the models “outperform” (from a CN view point) the actual pedestrians?
Our current guess, that needs further testing, is that the stripe formation pattern
described in [14, 17, 18] was stronger in the models than in the empirical data. It
has to be nevertheless verified if this is due to an actual dynamical effect, or if it is
just related to the noise inherent in real data (if this results to be the case, partic-
ular care should be used when performing a CN comparison between models and
experiments). Furthermore, even if the effect is dynamical, it may not be due to a
better avoidance strategy, but just due to the fact that establishing a self-organisation
pattern in space is easier when using 2 dimensional discs with respect to the pedes-
trians’ complex 3 dimensional body (this could also explain why the circular model
has a lower ⟨CN(t)⟩ than the elliptical one).

2. Assuming the models are actually “outperforming” the pedestrians, would such
models be of any use? We obviously want the models to reproduce actual behaviour.
Nevertheless, it may be interesting to understand why simulated pedestrians moved
more orderly, since their dynamics could provide some hints for better planning of
infrastructures, or have applications in robotics and autonomous navigation.
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