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Abstract Individual differences in mobility (e.g., due to wheelchair use) are often ig-
nored in the prediction of crowd movement. Consequently, engineering tools cannot fully
describe the impact of vulnerable populations on egress performance. To contribute to
closing this gap, we performed laboratory experiments with 25 pedestrians with varying
mobility profiles. The control condition comprised only participants without any addi-
tional equipment; in the luggage condition and the wheelchair condition, two participants
at the center of the group either carried suitcases or used a wheelchair. We found that in-
dividuals using wheelchairs and to a lesser degree those carrying luggage needed longer
to pass through the bottleneck, which also affected those walking behind them. This led
to slower times to fully clear the bottleneck in the wheelchair and luggage condition com-
pared to the control group. The results challenge the status quo in existing approaches to
calculating egress performance and other key performance metrics in crowd dynamics.
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1 Introduction

Crowd accidents are a frequent occurrence on a global scale and can have severe conse-
quences for pedestrian health and safety, and numerous studies have been published on
crowd movement and safety [1, 2]. As a result, the quality and quantity of knowledge in
this area have significantly increased in recent years [3–5]. Nevertheless, the variability
in mobility among individuals has frequently been overlooked (e.g., [6]). This is critical
because people with reduced mobility (e.g., due to temporary or permanent disabilities)
represent a large part of our societies, and variability in mobility likely influences pedes-
trian dynamics. In 2011, approximately 15.6 % of the world’s population were living with
disabilities [7]. Of those, about 10 % used a wheelchair as a mobility device [8]. These
statistics likely have changed, given the global trend of aging societies and the correlation
between increasing age and risk of living with a disability [9].

These trends have consequences for performance-based analysis of pedestrian move-
ment. The prediction and evaluation of egress performance in the built environment is
a crucial element of performance-based design in fire safety engineering. However, es-
timated capacities and key performance values usually rely on data from homogeneous
crowds, i.e., data from young adults without disabilities. Individual differences in mo-
bility, space requirements (e.g., due to wheelchair use), and interactions between people
are ignored. Therefore, engineering tools (e.g., computational models, simulations, and
analytical techniques commonly used in civil and safety engineering disciplines to eval-
uate and predict the performance of egress systems) lack ecological validity and cannot
adequately describe egress performance. Several studies observed reduced flows through
bottlenecks and lower pedestrian densities in heterogeneous crowds [10–16]. A review of
egress data considering people with disabilities suggested supplementing pre-movement
and horizontal movement data sets considering different types of mobility characteristics
[3, 17].

Several studies reported reduced movement speed through bottlenecks in crowds with
wheelchair users compared to data from more homogeneous samples [18–22]. Tsuchiya
et al. found that if the bottleneck was wide enough to allow pedestrians to pass, wheelchair
users were overtaken and the general speed increased. However, when wheelchair users
passed the bottleneck, both the local density and the flow were reduced. The observed
effect scaled with the number of wheelchair users and reduced the flow by 15 % (with
up to three wheelchair users present) [18]. Similar trends were reported by Daamen et
al., who observed a decreased capacity of 20 % of the bottleneck when three participants
with simulated blindness and three participants in wheelchairs were part of the study
population [23].

In one study, wheelchair users made up 13 % of the sample and led to a reduced overall
movement speed [22]. This study also compared space requirements between partici-
pants in wheelchairs and physical dimensions of wheelchairs: While the physical area of
wheelchairs used in the study was reported as approx 0.3 m2, the approximated required
space for free movement during trials was reported as about 0.8 m2. These findings are
in line with previous work that reported larger spatial distribution areas of wheelchairs
than of pedestrians [24]. It should be noted, however, that wheelchairs and other assistive
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devices can vary significantly in appearance, dimensions, and how they are operated.
The movement characteristics of wheelchair users differ from pedestrians and also af-

fect movement in their neighborhood. Overall, Feliciani and colleagues [25] observed
smoother movement patterns for wheelchair users and their neighbors. However, Shi-
mada et al. only observed a smoother movement of self-operated wheelchair users and
not in assisted operated wheelchairs [10].

An important question is what the underlying mechanisms of the differences between
heterogeneous and homogeneous crowds are. Previous work has found anecdotal evi-
dence that pedestrians keep a larger distance from wheelchair users [26]. This change in
behavior may have cascading effects on microscopic and macroscopic movement param-
eters. One potential explanation is that pedestrians without disabilities attribute higher
vulnerability to people with visible disabilities, and therefore are more courteous when
moving near them. However, to the best of our knowledge, the effects of perceived vul-
nerability as well as the required space of others have not yet been studied in the context
of crowd movement.

To address this gap, we present results from controlled experiments studying the move-
ment of crowds with a fixed number of wheelchair users (higher perceived vulnerability
and space requirements), participants with luggage (higher space requirements), or with-
out any devices moving through a bottleneck.

2 Materials and methods

2.1 Pilot study

A pilot study was conducted to assess the perceived vulnerability of a range of pedestrian
profiles (see [27]). 51 participants compared persons with different mobility attributes in
a Two-Alternatives-Forced-Choice (2AFC) online survey. Participants were shown pairs
of images, each showing an illustrated character, and then asked to select the person who
appeared more vulnerable to them. For example, participants would choose between a
male person in a wheelchair and a female person carrying a suitcase. In total, there were
16 different stimuli (male vs. female; no device, 1 suitcase, 2 suitcases, small back-
pack, large backpack, stroller, cane, and wheelchair), yielding n(n−1)/2 = 120 pairwise
comparisons per participant. The detailed methods and procedures of the pilot study are
described [27]. Fig. 2(a) shows that wheelchair users appeared the most vulnerable and
persons without any items/devices the least vulnerable. Persons carrying two suitcases
were in the middle. These results informed the design of the main study, in which we
selected these three conditions.

2.2 Main study

Data from up to 25 volunteers were collected on three consecutive days in an indoor gym.
All participants wore hats with fixed ArUco Markers which provide a unique identifier,
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Figure 1 Study configuration with predefined starting positions and participant example trajectories from
a single trial. Participants starting from specific positions (red colored area (C3, C5)) were
either equipped with a manually operated wheelchair, carrying luggage, or were from the control
group. Please note that two different types of manually operated wheelchairs were used (cf.
central and bottom image).

positional and directional information. Participants were recorded with calibrated over-
head cameras with a framerate of 30 s−1. The head trajectories were extracted from the
raw video footage using PeTrack [28].

Participants were primarily young adults between 21 and 45 years (mean age: 28.5±
11.7 years). 54 % identified as female, 45 % as male, and 1 % with another gender identity.
All participants gave informed consent and were compensated for their time. The study
was approved by the NRC Research Ethics Board (REB2021-106).

Fig. 1 shows the study design. Participants had to stay in a regular marked area on
the ground consisting of squared cells with a size of 0.6 m2 starting 4 m in front of the
bottleneck. They moved through the bottleneck at a leisurely pace. We manipulated the
mobility profile of two participants at the center of the crowd (either wheelchair users,
pedestrians with two suitcases, or no manipulation).

In the wheelchair condition, two experimenters joined the study using manually oper-
ated wheelchairs and occupied the two positions at the center of the crowd. The other par-
ticipants were not aware that these were neither naive participants nor everyday wheelchair
users. Both had received adequate training in using a wheelchair.

In the luggage condition, four spinner suitcases were randomly assigned to two par-
ticipants, i.e., each participant was equipped with two suitcases. Assuming that spinner
suitcases are common for personal travel, no specific navigation training was conducted.
No wheelchair users were present in these conditions.

The starting positions of participants using wheelchairs or carrying luggage were fixed
to two specific start positions at the center of the crowd (C3 and C5, cf. Fig. 1). The
control condition served as a reference point, and the mobility profile of the two central
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participants was not modified.
We differentiated between the following groups: (a) participants starting in the first

row D, (b) participants starting at the defined starting positions C3 and C5 (central par-
ticipants), (c) participants without a wheelchair and luggage, starting in the second row C
(but not C3 and C5), and (d) participants starting in the last two rows A and B. Each trial
was repeated for each condition about 30 times.

The passage of the bottleneck for each individual was measured at the blue line at x = 0
(cf. Fig. 1). Three metrics characterize the movement process upstream and inside the
bottleneck: First, the time it takes for each participant to reach treach the bottleneck, i.e.,
the time between the start of the trial and reaching the blue line. It describes the individual
dynamics prior to reaching the bottleneck. Second, the time it takes each participant to
pass through tpass the bottleneck, i.e., the time between the passage of a participant and his
follower. This measure illustrates the dynamics within the bottleneck. Third, the time of
the last participant tleave to pass the bottleneck in a trial, which characterizes the duration
of the emptying process macroscopically for the entire crowd.

3 Results and discussion

Time to reach the bottleneck: Across conditions, participants in the first row were usu-
ally the first to reach the bottleneck. This is not particularly surprising, given that the first
row was typically not affected by the movement of the two central participants. A smaller
median (t̃reach = 5.6s) was observed in the wheelchair condition compared to the control
(t̃reach = 7.1s) and luggage condition (t̃reach = 6.8s). In the second row, participants in the
control condition reached the bottleneck in a shorter time (t̃reach = 9.9s) than in the two
other conditions. Wheelchair users reached the bottleneck faster (t̃reach =12.6 s) than the
luggage user (t̃reach = 14.3s) which indicates that the experimental manipulation affected
the movement of the central participants. It is somewhat striking that wheelchair users
reached the bottleneck faster than luggage users. These differences perpetuate to the last
rows, again with participants in the control condition reaching the bottleneck earlier than
those in the other conditions. Overall, those starting from the last rows also needed the
longest time to reach the bottleneck (Fig. 2(b)).

Time to pass through the bottleneck: Generally, differences between starting posi-
tions were negligible (Fig. 2(c)), suggesting that similar mobility characteristics lead to
similar values. In the last rows, however, the median time to pass consistently exceeded
those in the other rows by a small amount (t̃pass = 0.53s in the first row vs. t̃pass = 0.77s
in the last row). However, we observed that the experimental manipulations had strong
effects on participants in the wheelchair and luggage condition. Carrying two suitcases
doubled (t̃pass = 1.3s) and using a wheelchair even tripled (t̃pass = 1.9s) the median time
to pass through the bottleneck compared to the control condition (t̃pass = 0.6s). The out-
liers in the last row of the wheelchair condition likely were individuals whose time to pass
through the bottleneck was affected by wheelchair or luggage users ahead of them.

Last participant to leave the bottleneck: In line with the previous observation, Fig. 2(d)
shows that the last participants in the control condition (t̃leave = 18.3s, t̄leave = 19.2s) were
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Figure 2 (a) Perceived vulnerability as a function of mobility attributes. (b) Time to reach the bottleneck,
(c) time to pass through the bottleneck, and (d) time of the last participant to pass the bottleneck
as a function of start position and trial conditions. Green horizontal lines are the median, and
blue points are the mean values.
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typically faster than those in the luggage (t̃leave = 22.2s, t̄leave = 22.7s) and the wheelchair
(t̃leave = 23.2s, t̄leave = 23.5s) conditions.

4 Conclusion

The results highlight the impact of individual mobility profiles on crowd dynamics. The
presence of individuals with diverse characteristics adds complexity and interactivity to
crowd movement. Specifically, when passing through the bottleneck, participants with
luggage or in wheelchairs slowed down individually and affected those immediately be-
hind them. However, those passing through the bottleneck before them remained largely
unaffected. It was most efficient to pass through the bottleneck without a wheelchair or
luggage, and carrying luggage was less disruptive than using a wheelchair in such scenar-
ios.

Overall, our findings support previous work (e.g., [26]), suggesting that increased het-
erogeneity changes crowd dynamics. This adds to the growing evidence challenging the
status quo of existing approaches to estimate capacities and key performance values of
crowd movement. The controlled approach to manipulate heterogeneity as well as the
repeated trials in particular provide robust evidence that egress calculations that do not
consider heterogeneous movement profiles likely generate overly optimistic results.

However, more evidence is needed given the limitations of the present work, such as
the relatively small sample and relying on simulated mobility impairments with partic-
ipants who do not use wheelchairs in their daily lives. Consequently, the findings may
not generalize to populations with varying mobility impairments and different types of
mobility devices. This limitation underscores the need for future research to improve our
understanding of crowd dynamics and visual confidence in augmented reality across a
more diverse range of participants and conditions.
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