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Abstract We study viral transmission in crowds via the short-range airborne pathway us-
ing a purely model-based approach. Our goal is two-pronged. Firstly, we illustrate with
a concrete and pedagogical case study how to estimate the risks of new viral infections
by coupling pedestrian simulations with the transmission algorithm that we recently re-
leased as open-source code. The algorithm hinges on pre-computed viral concentration
maps derived from computational fluid dynamics (CFD) simulations. Secondly, we inves-
tigate to what extent the transmission risk predictions depend on the pedestrian dynamics
model in use. For the simple bidirectional flow under consideration, the predictions are
found to be surprisingly stable across initial conditions and models, despite the different
microscopic arrangements of the simulated crowd, as long as the crowd evolves in a qual-
itatively similar way. On the other hand, when major changes are observed in the crowd’s
behaviour, notably whenever a jam occurs at the centre of the channel, the estimated risks
surge drastically.

Keywords Epidemiology · crowd modelling · risk assessment

1 Introduction

Designing robust tools to assess the risks of viral spread in pedestrian crowds and making
them readily accessible to practitioners with limited computing capabilities is of manifest
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Figure 1 Principle of the algorithm to assess transmission risks: Exhalations and aerosol emission are
reproduced with high-fidelity CFD methods (middle) and then coarse-grained into dynamic viral
concentration maps (right). For computational acceleration, transmission risks beyond 4 m may
be discarded.

practical relevance for public safety, especially in the aftermath of the COVID-19 pan-
demic. For example, it would enable them to test variations of designs or flow rules for
a given venue and determine which is the most suitable if an epidemic is lurking. While
a number of such tools have been proposed, they generally either rely on a very coarse,
and questionable, evaluation of transmission risks [1] or require considerable computing
capabilities, even in their streamlined version [2]. In a recent publication [3], we focused
on the short-range airborne transmission route [4], i.e., the infection of a susceptible in-
dividual after the inhalation of virus-laden aerosols emitted by a contagious person who
talks, shouts, eats, or just breathes in their immediate surrounding, and we showed how
to overcome the foregoing limitations: this was achieved by computing spatio-temporal
maps of viral concentration around a contagious person using high-fidelity microscopic
simulations in a variety of micro-environments (in particular, diverse relative winds) and
storing them in memory, so that at run time they are just loaded to assess the transmission
risks between individuals in a macroscopic crowd [3]. Since then, the associated Python
scripts have been released as open-source code.

In this contribution, we explain how this code can be used in practice to integrate the
output of crowd simulation software. Then, we investigate the sensitivity of the predic-
tions to the pedestrian dynamics model in use. For that purpose we consider a simple
bidirectional flow and simulate it with various popular models.

2 Principles of the model-based assessment of viral
transmission risks in crowds

A chain of arguments is only as strong as its weakest link. Accordingly, one should not
lend more credence to numerical tools designed to assess the risks of viral contagion than
the underlying transmission model between individuals deserves. Consider two individ-
uals, a contagious one (E) and a susceptible one (R); the instantaneous transmission rate
due to aerosols emitted by E at te and inhaled by R at tr > te can be written as

ν(te, tr) = T−1
0 ν̃

[
E(te),R(tr), tr − te, ambient flows, activity(te)

]
, (1)
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Figure 2 Sketch of the geometry and initial conditions of the considered bidirectional corridor flow con-
figuration. 45 blue agents head for the blue star to the left, whereas their 45 red counterparts
head right.

where the function ν̃ accounts for the fluid dynamics of particle emission and transport,
and will be obtained using CFD simulations. It depends on the geometric positions and
head orientations of E at tE and R at tR, the delay tr − te, the respiratory activity of the
emitter (mouth-breathing, speaking, shouting, singing, etc.), and the ambient air flows.
On the other hand, all pathological and physiological uncertainties and unknowns about
the emitter’s viral load, the inhalation probability and the typical infectious dose (under
an independent viral action hypothesis) are subsumed into the variable T0, which is the
characteristic time for infection in a reference situation. (In our simulations, we system-
atically find that the estimated transmission rates, multiplied by T0, are hardly sensitive
to the value of T0.) Thus, Eq. 1 splits the disease transmission rate into factors pertaining
to the emission and propagation of virus-laden particles (integrated in ν̃) and biomedical
factors specific to the virus (subsumed into T0). Early risk assessment endeavours coarsely
assumed that the transmission function ν̃ only depends on the distance between E and R at
emission time tE and, quite often, that ν̃ is finite and constant below a threshold distance
called contagion radius, and vanishes above [1]. This is of course very questionable and
we will see in Sec. 4 that this approach may be misguided. At the other extreme, detailed
CFD simulations take into account all geometric considerations, the spatial layout, the air
flow field and other environmental details; they are thus very accurate, but sensitive to
small variations in the input conditions and, above all, computationally very demanding
[2, 5].

To reduce this computational cost, we adopted an intermediate stance in [3], by sim-
ulating inhalation and exhalation flows beforehand in a variety of micro-environmental
conditions, notably for a gamut of relative winds, and injecting in the resulting flow
aerosols and droplets with a size distribution similar to that found while either mouth-
breathing or talking. From the simulated microscopic trajectories of these particles, we
derived coarse-grained spatio-temporal maps of viral concentration around a contagious
emitter taken in isolation and stored them in memory; the workflow is sketched in Fig. 1.
Risks of new infections can then be obtained very efficiently by coupling these maps to
pedestrian trajectory and head orientation data.

While these data were obtained from field observations in our previous works [3, 6],
here we explore the possibility of using numerical simulations of crowd dynamics as input
to the risk assessment code. To gauge how likely the results are to be robust, we shall use
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widely different pedestrian models. In terms of scenario, particular simple flow settings
are contemplated, namely, a well-balanced bidirectional flow in a 4-meter-wide corridor,
which is located either outdoors or in a well ventilated space (so that risks mostly originate
from direct exposure to emitted droplets and aerosols, rather than airborne contagion via
long suspended aerosols). The layout and initial conditions are shown in Fig. 2: initially,
the agents (of body radius 0.2 m) are randomly positioned in their respective waiting
spaces, without overlap; their preferential speeds are randomly drawn from a uniform
distribution between 1.0 and 1.5 m/s. Let us underline that this flow scenario is devoid of
many complexities which would add to the modeller’s burden in many practical situations,
such as the uncertainty about people’s destinations, their possible wish to halt temporarily,
or the presence of social groups.

3 Our open-source code – a succinct tutorial

As one of our goals is to give a pedagogical introduction to our numerical method,
we now present a synthetic tutorial of the tool we developed, which will connect the-
oretical assumptions, modeling choices, and practical implementation. Suppose that
the pedestrian trajectories and head orientations are already known (this will be at the
heart of the next section). To estimate the rate of new infections caused by an index
patient, we use the open-source Python scripts available in the public GitHub reposi-
tory https://github.com/an363/InfectiousRisksAcrossScales. Af-
ter cloning the GitHub repository and unzipping the compressed folders (notably Dia-
grams.zip), we open the input file called “InputFile.txt” to adjust the paths and simulation
conditions, viz.,

DiagramsFolder= [PATH TO FOLDER WITH SPATIO-TEMPORAL DIAGRAMS]
OutputFolder= [PATH TO OUTPUT FOLDER]
TrajectoryFolder=[PATH TO FOLDER WITH TRAJECTORIES]
T0= [characteristic infection time, in seconds]
(vx,vy)= (vx, vy in m/s) # external wind speed
ExhalationMode= [choose between: breathing / speaking / large droplets]
IsotropicInhalation= [choose between: True / False]
ContagionAmidGroups=[choose between: True / False]

The algorithm will thus load the trajectories contained in text files within Trajectory-
Folder. Each file should correspond to one agent and should be named [GROUP-ID] [PED-
ID].csv, e.g., 1 3.csv, for pedestrian 3 belonging to social group 1; each line of this file
refers to a successive timestamp and contains four floats, as follows:

time (in seconds); x-position in meters; y-position in meters; head orientation in radian

For instance, “10.1;1.2;2.3;0.1” means that at time t = 10.1s the agents stands at x =
1.2m, y = 2.3m, with a head oriented along a direction 0.1 rad past the x-axis (counter-

https://github.com/an363/InfectiousRisksAcrossScales
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clockwise). Finally, we run the script main.py with Python 3 (for instance by typing $
python3 main.py in the terminal).

The characteristic infection time is the timescale T0 appearing in Eq. 1; The Exhala-
tionMode determines the number and size distribution of emitted droplets; the Booleans
IsotropicInhalation and ContagionAmidGroups indicate if agents can inhale aerosols com-
ing hitting the back of their heads (by default, we recommend to set it to False) and if a
contagious person can infect other members of their social group (i.e., if these members
are still susceptible despite probable previous contacts with the index patient).

Note that semi-colons can be used to separate multiple input conditions if the user wants
to launch multiple runs sequentially with a single input file, for instance (vx,vy)=(0.0,0.0);
(-0.2,0.5) or ExhalationMode=speaking;breathing. Comments after a hash symbol at the end
of each line are discarded.

The risk assessment outcome is saved in OutputFolder, with a distinct folder for each
set of conditions. The folder contains a summary of the parameters (parameters.txt), a
file detailing how many new cases each distinct agent would cause per hour, should they
be contagious (Risks by person output...dat), and one file containing the mean number of
new cases per hour (Risks mean output...dat). In these two files, for every line, a lower
bound Clow and an upper bound Cbar on the number of new cases are given: the upper
bound is the value if everybody (but the index patient) is susceptible at the beginning of
the simulation, whereas the lower bound refers to the possibility that agents have already
been infected by the index patient, outside the observed field of view. In practice, these
two bounds are extremely close to one another, so we shall not elaborate more in this
regard.

4 Impact of the chosen pedestrian model on the risk
assessment

To determine to what extent the risks of new infections in a given setup can be determined
by a fully model-based approach, we now couple the foregoing algorithm with the output
of pedestrian simulation software. To this end, we consider the simple bidirectional-flow
settings introduced in Sec. 2 and compare the trajectory predictions of various crowd
dynamics algorithms, using the UMANS software developed at INRIA [7] to simulate
them all.

More precisely, we put to the probe five different models. Two come from the field of
robotics, RVO [8] and ORCA [9], and are based on the idea of velocity obstacles: roughly
speaking, each agent selects the velocity closest to its desire, but outside the ‘cone’ of
velocities leading to an imminent collision. Instead, SocialForces posits that pedestrians
maintain their distance to their neighbours because of binary repulsive pseudo-forces at
play in a Newton-like equation [10] (these forces are sensitive to the relative velocities of
the agents in the UMANS implementation). Karamouzas et al.’s PowerLaw model [11]
substitutes these mostly distance-dependent pseudo-forces with pseudo-forces that are
inversely related to the anticipated time to collision (i.e., the delay after which a collision
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is expected if all velocities are conserved). Finally, Moussaid resorts to simple heuristics
to select a direction of motion (which should bring the agent closest to the goal before
any collision) and a speed [12]. Note that the recent and versatile ANDA model [13] is
not considered here, because it has not been implemented in the UMANS software. In all
simulations, pedestrians are described as disks of radius 0.2 m and preferential speeds are
uniformly distributed between 1 and 1.5 m/s. The predictions of the models at a random
time in the scenario are shown in Fig. 3

Importantly, we do not optimise the parameters of the models, but use the default ones
natively coded in the UMANS software. Furthermore, we adopt a constant numerical time
step dt = 0.01s for all models. Clearly, should one wish to make the simulation as realistic
as possible, then the parameters and time step would need to be adjusted. In particular,
dt = 0.01s is definitely too large for some simulations, which leads to occasional spurious
effects (such as a reduced ability to form lanes in Moussaid and PowerLaw). Last but not
least, the corridor walls are not properly handled in the UMANS implementation of the
PowerLaw and ORCA models, so that a couple of agents cross them now and them (but
most agents remain confined in the corridor width). While these artifacts are undesirable
for practical applications, here they will actually turn out to be quite enlightening, as
we shall see, because they give rise to a different phenomenology whose impact on our
risk assessments we can explore. For the sake of simplicity, simulations are referred to
with the name of the model employed in the figures. However, bear in mind that we do
not intend to compare models, but to investigate the influence of pedestrian dynamics on
transmission risks prediction, the use of different models allowing one to explore different
dynamics.

Let us now couple the simulated pedestrian trajectories with the viral transmission code.
To do so, we consider environmental conditions with very little wind (actually, an almost
undetectable draught), (vx,vy) = (0,0.2m/s), T0 = 900s and we assume that people are
constantly talking in the scenario, with their heads oriented in the instantaneous walking
direction and an emission point at the centre of the head.

In these conditions, Fig. 4 presents the estimated transmission rates for at least a dozen
simulations of each model for 18 seconds each (each realisation is represented by a dot).
We start by focusing on the three leftmost columns, corresponding to RVO, ORCA, and
Social Forces. What strikes us is the strong homogeneity (low dispersion) within each
model, i.e., across all realisations of initial positions and preferential speeds. These varia-
tions visibly affect the dynamics, but they hardly impact the estimated transmission rates,
apart from one outlier in the ORCA model (to which we shall come back later). Even
more arresting is the consistency of the predictions across the three models. This is partly
unexpected because the arrangement of the crowd, notably in terms of spacings, differs
markedly between the models, as illustrated in Fig. 3. In particular, ORCA agents tend
to come very close to each other, almost within contact, which is consistent with the fact
that velocity obstacles prohibit the selection of a velocity that leads to a collision, but do
not penalise close proximity. By contrast, SocialForces agents, repelled by their mutual
social forces, keep a significant distance to each other. This discrepancy would have led to
drastic variations in the estimates if we had used a naive transmission model based on the
instantaneous spacing between agents, or on a distance-based contagion radius. Instead,
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Figure 3 Snapshots of the simulations, approximately halfway through the run, simulated and visualised
with the UMANS software, using the native parameters for every model and a constant integra-
tion time step dt = 0.01s (which departs from the continuous limit at least for PowerLaw and
Moussaid, marked with a star). Quotation marks have been used around the models’ names,
because we have made no endeavour to specifically adjust the model parameters to the present
scenario.

here, because pedestrians are moving, the virus-rich exhalation cloud dragged in their
wake may affect people following them; the external wind and the walking-induced rela-
tive wind also undermine any naive assumption of an isotropic decay of the transmission
risks with distance.

Bearing in mind this strong homogeneity in the risk estimates despite the observed dif-
ferences in the dynamics, how can one explain the much larger estimates obtained with the
PowerLaw and, even more so, Moussaid models, as well as for one ORCA outlier? Direct
visualisation of the numerical output gives the answer: In these simulations (including
the ORCA outlier), the two counter-flows fail to intertwine so as to pass each other and,
instead, form a jam at the centre of the channel; these jams are pretty systematic, but may
be temporary (as with PowerLaw) or much longer-lived (Moussaid). In that situation,
agents in the jam stand close to each other, at almost zero speed. In the absence of signif-
icant external wind to disperse the exhaled puffs, this configuration is quite favorable for
airborne transmission, which explains the high transmission rates.

5 Conclusion

In summary, we have explored the possibility of a purely model-based assessment of the
risks of airborne viral transmission (by direct exposure), in actual and hypothetical sce-
narios. Using a practical example, we have explained how to make use of our recently
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Figure 4 Mean number of new cases per hour caused by a contagious agent, estimated using diverse
pedestrian simulation models and varying the initial conditions.

released Python scripts designed for that purpose. The method hinges on the assump-
tion that an agent’s puff is only marginally influenced by the other pedestrians in the
neighbourhood and relies on pre-computed dynamic viral concentration maps, which are
computed with detailed CFD simulations in a variety of micro-environmental conditions
and stored in memory. This leads to robust model-based risk assessments that are several
orders of magnitude faster than CFD-based ones and can be run on a personal laptop.

Then, enquiring into the role of the pedestrian model in use to simulate pedestrian tra-
jectories, we have compared the output of diverse models implemented in the UMANS
software [7], in a non-specifically tailored version. This has led to interesting, partly
unexpected findings. In the very simple dynamic settings under study, the fine-grained
organisation of the crowd flow has little incidence on the global transmission rate. In
particular, the estimated rates are remarkably stable with respect to the initial positions
and preferential speeds of the agents, and even to how much social distance they maintain
around themselves (e.g., very little in simulations using ORCA, much more in those using
SocialForces). This is quite at odds with what would be predicted by models premised
on the idea of a contagion radius; it can be rationalised by the aerosols left and dragged
in pedestrians’ wakes (noting the absence of any prolonged tight contact in the present
scenario). On the other hand, substantial variations in transmission risks do occur if ma-
jor phenomenological changes take place in the crowd. For instance, a drastic increase
in transmission rates is observed whenever the counter-walking groups fail to form inter-
calating lanes that fluidise the flow, but end up forming a high-density, halted jam at the
centre. More broadly speaking, we expect that, for an identical scenario with moving peo-
ple, moderate variations in the trajectories predicted by distinct models will have limited
incidence on viral spread estimates, whereas structural differences (such as the formation



Viral transmission in pedestrian crowds 9

of groups of halted people, possibly talking to each other) will substantially alter the re-
sults; these expectations may not hold for static scenarios in windless conditions, where
the transmission risks may sensitively depend on the distances between people.
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Acknowledgements. Part of this work was funded by Agence Nationale de la Recherche:
projects SeparationsPietons (ANR-20-COV1-0003, A. Nicolas) and TransporTable (ANR-
21-CO15-0002, S. Mendez). The CFD simulations were performed using HPC resources
from TGCC-IRENE (Grants No. AP010312425, A0100312498 and A0120312498).

Conflict of interest. The authors are not aware of any conflict of interests.

References

[1] Harweg, T., Bachmann, D., Weichert, F.: Agent-based simulation of pedestrian dy-
namics for exposure time estimation in epidemic risk assessment. Journal of Public
Health pp. 1–8 (2021)
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