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Abstract Classifications of pedestrian crowds primarily rely on density. This fails to
encompass the diverse behaviours and risk profiles observed. We have introduced two
dimensionless numbers, the Intrusion number In, based on the desire to maintain one’s
personal space, and the Avoidance number Av, based on the anticipation of collisions.
These two numbers delineate different flow regimes, as we intuitively expect and as we
have empirically demonstrated using an extensive dataset. Similarly to Fluid Mechanics,
where dimensionless numbers guide the choice between different approximations, the
dynamics of crowds can be approached in each regime by perturbative expansions of the
individual pedestrian dynamics, which yield approximate equations of motion applicable
in the corresponding regime (and only there).

Keywords Pedestrians · modelling · dimensionless numbers · collision avoidance ·
intrusion

1 Introduction

The enterprise of classifying pedestrian crowds goes back at least to Fruin [1], who intro-
duced the concept of level of service (LoS) in pedestrian dynamics. LoS is mainly based
on density as classification criterion, following the idea that each level will be marked
with a distinctive dominant behaviour of the individuals, e.g., (un)avoidable contact, ne-
cessity to change gait, possibility to turn around, etc. However, the boundaries between
the classes are rather arbitrary. Furthermore, using just the density as classifier is not
sufficient, as one has come to realise: crowds at similar densities can exhibit different be-
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Figure 1 Schematic illustration of the meaning of the dimensionless Intrusion (Ini j) and Avoidance (Avi j)
variables between agent i, dressed in blue, and agent j, in green or pink.

haviours and risk profiles, e.g. when comparing a static audience at a concert and people
vying for escape in an emergency evacuation [2].

This observation has led to alternative proposals for classifiers. Recently, it has been
suggested that a dimensionless number related to the vorticity of the velocity field better
discriminates between such scenarios [3]. Although this quantity may be very relevant
for safety analysis, it does not provide much insight into the determinants of pedestrian
dynamics at the microscale. Gaining such insight, however, would be highly desirable as
it would also clarify the realm of applicability of the large zoo of models that have been
proposed for pedestrian and crowd dynamics.

Our approach draws inspiration from fluid dynamics, where suitably defined dimen-
sionless numbers help specify properties of fluid flows. A prominent example is the
Reynolds number. In a similar spirit, we introduce two dimensionless numbers for crowd
motion [4]. These numbers aim to quantitatively capture two essential factors for an in-
dividual’s motion amid a crowd, namely, the preservation of one’s personal space and
the anticipation of collisions. In the following, we propose a pedagogical discussion that
elaborates on the findings already reported in [4].

2 Concepts of Intrusion and Avoidance

People generally shun too close contacts with other people, especially if they are unre-
lated. Preferred interpersonal distances vary between countries and cultures and depend-
ing on the relationship between people [5], but the will to preserve some personal space
is virtually universal [6] and naturally impacts the arrangement of crowds. To capture
this effects in a quantitative fashion, we introduce an intrusion variable Ini j for binary
interactions between agents i and j, viz.,

Ini j =

(
rsoc − ℓmin

ri j − ℓmin

)2

, (1)
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where ri j is the centre-to-centre distance of pedestrians i and j. It quantifies the areal en-
croachment of other agents j on the personal space of agent i. As illustrated in Fig. 1 (Left),
Ini j decays with the distance between people; it vanishes for isolated pedestrians, but di-
verges when people come into physical contact. For simplicity, we assume that both
agents and their personal space are circular (with diameter ℓmin = 0.2m and radius rsoc =
0.8m, respectively), i.e. effects of anisotropy are neglected. As several agents j may
surround agent i, the latter experiences an intrusion

Ini = ∑
j∈Ni

Ini j. (2)

For the data presented below, the sum in (Eq. 2) has been taken to run over the set Ni of
all close neighbours j of i, here defined by ri j ⩽ 3rsoc. The exact definition of a number
Ini that fulfils the above criteria can of course be varied, for instance changing the power
exponent in Eq. 1, but the variations we have tested do not qualitatively alter the results,
even though they may not delineate regimes as well as Eq. 1-Eq. 2 (see below, but also
[4]).

Short interpersonal distances are not the only factor that pedestrians are keen to avoid.
Indeed, they also baulk at standing in a collision path with another pedestrian, all the
more so as the possible collision is imminent, because this implies that they will have to
abruptly swerve to avoid it. We quantify the risk of an imminent collision between two
agents i and j with the avoidance variable

Avi j =
τ0

τi j
, (3)

where τi j is the anticipated time-to-collision (TTC) and τ0 = 3s denotes the timescale
above which potential collisions are hardly dreaded. TTC is defined as the time until
the first collision if both agents i and j keep their current velocities. It is set to τi j = ∞

(hence, Avi j = 0) if no collision is expected. Importantly, as sketched in Fig. 1 (Right), the
avoidance variable may take large values even if there is strictly no intrusion at present,
and conversely it may be vanishing even if the personal space is strongly violated. In
contrast to Eq. 2, we assume that each agent is mostly concerned with only the most
imminent risk of collision, in the light of experimental evidence that pedestrians tend to
gaze mostly at one risk of imminent collision [7], so that in the definition of the agent-
centred variable

Avi = ∑
j∈N′

i

Avi j, (4)

we restrict the set N′
i to the agent j with the shortest τi j, hence Avi = max j Avi j. Again,

alternative definitions of Avi have been put to the probe, for instance taking the square of
τ0/τi j in Eq. 3, with little incidence on our qualitative results [4].

3 Delineation of Crowd Regimes

To classify crowd flows with many pedestrians, the foregoing agent-centred variables are
averaged over the N(t) agents observed in the crowd at time t, and then over time. This
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Figure 2 Classification of pedestrian crowds by the dimensionless numbers In and Av. Left: Schematic
diagram drawn according to the intuition and illustrated with exemplary snapshots. Adapted
from [4]. Right: Empirical diagram obtained from the extensive pedestrian dataset. Each data-
point corresponds to one experimental run or observational sequence.

average value defines two dimensionless numbers, the Avoidance number (Av) and the In-
trusion number (In). For the calculation of Av, we only consider data points with a finite
Time to Collision (TTC), because in sparse situations many pedestrians are observed with
Avi = 0, which would lead to a very low Av although the pedestrians whose trajectories
are actually influenced by others may have significant Avi; in other words, pedestrians
with Avi = 0 are supposed to be non-interacting and are discarded to obtain a neater clas-
sification.

Fig. 2 (Left) shows the crowd flow patterns that one would tentatively expect to see on a
diagram parametrized by Av and In, using exemplary cases. Close to the origin (In,Av ≪
1), the agents can freely pursue their goals, which corresponds to very sparse crowds
with little interactions. Moving up along the In-axis, the scenery gets more crowded and
pedestrians are eager to keep a certain distance to each other. The simplest example is
that of a (mostly static) waiting line, where people halt to preserve their mutual personal
spaces. This regime can also be exemplified by a sparse crowd walking in the same
direction, i.e., a unidirectional flow. If more and more people are present in the scene, then
In ≫ 1, i.e. intrusions into the personal or intimate space are unavoidable and mechanical
contacts may occur, e.g. in a tightly packed static crowd (Waiting scenario). However,
one can also leave the origin by moving to the right, along the Av-axis. This is exemplified
by the beginning of the Antipodal experiment, where the participants are well separated
but face an anticipated collision in the centre of the circle. The top corner (Av, In ≫ 1)
represents e.g. Bottleneck experiments with high motivation.

The foregoing discussion is guided by the intuition, but it can be made concrete by
calculating Av and In from real pedestrian trajectories. Therefore, we have collected
a large dataset consisting of controlled experiments (single-file motion [8], bottleneck
flows [9], corridor flows [10–12], antipodal scenarios [13], the intruder scenario [14], a
static queue [15]). Further details about the data sets, the method to smooth trajectories,
and the calculation of the Avoidance and Intrusion number (every 0.5 s over the whole
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Figure 3 Alternative classification of pedestrian crowds, where the In number on the vertical axis has
been substituted by the global density ρ .

(quasi-)stationary state) can be found in the Appendix of [4].
Indeed, the empirical values of Av and In shown in Fig. 2 (Right) comforts our intuition

from Fig. 2 (Left). Low density single-file experiments have small In and Av. In com-
parison, a static Queue has a very low Avoidance number as well, but displays a higher
Intrusion number. A very densely packed static crowd (Waiting) can be found at the top
left. While these could be delineated by the density (or the Level of Service) alone, many
scenarios can only be distinguished by Av. For example, unidirectional from cross flows,
the beginning of an Antipodal experiment from typical sparse outdoor settings, or a static
crowd with and without an intruder passing through it. More subtle differences are also
apparent, for example, the difference between the same bottleneck runs with low and high
motivation, where the latter shows both higher In and Av numbers.

We chose to have an Intrusion number based on distances instead of using the local den-
sity. This is partly justified by the ambiguity in the definition of a local density. However,
we acknowledge that the averaged In is still closely related to the density, which certainly
is the quantity most commonly used to classify crowds. In Fig. 3, we have substituted the
Intrusion number with the global density ρ , calculated as the number of pedestrians di-
vided by the available space.1 The delineation of different regimes is still clearly visible.
Only the Single-File data strongly deviate from the original diagram, where, relative to
the rest of the diagram, moderate intrusions seem to correspond to high densities. In the
Single-file scenario, the pedestrians do not have lateral neighbours. Therefore, the devia-
tion might actually be reflected in the subjective feeling of the pedestrians. Alternatively,
the deviation might also be explained by the presence of obstacles, e.g. walls, which are
very close to all of the agents in the single-file scenario and have not been taken into ac-
count. Besides, the Cross scenario and the Bottleneck scenario are at lower densities, but
higher In values, compared to the Waiting scenario. In the latter, people are distributed

1To enable us to plot the Single-File data along with the rest, the one-dimensional density, calculated as the
number of people divided by the length of the track, was rescaled according to [16], where we assumed
a width of 0.3m.
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very homogeneously, whereas inhomogeneities are conspicuous in the former, including
regions of tight packing. The Intrusion number puts more weight on these tightly packed
neighbourhoods.

We emphasise that the spread of points for a given geometry is expected, as the nature
of the flow in one geometry can change with ‘boundary conditions’ (e.g. inflows or den-
sity). Conversely, two different scenarios can lead to similar numbers. It seems to us that
these points are in support of the chosen approach, rather than shortcomings, in that this
shifts the focus on the flow properties experienced by pedestrians. For example, crossing
flows at high densities generate effective ‘bottlenecks’, so much so that the properties of
crossing flows at higher densities are thought to be controlled by emergent bottlenecks;
finding similar dimensionless numbers for crossing flows and actual bottlenecks is there-
fore not so surprising.

That being said, to some extent there is a link between the flow properties and the
typical self-organisation of the pedestrians. To get insight into the relation between the
structure and the dimensionless numbers, and following [17], we have studied the crowds’
structure in asymptotic regimes using the pair-distribution function [4]. This has led us
to the observation that Euclidean distances are relevant to describe the crowd’s structure
at low Avoidance number, whereas the TTCs are relevant at low Intrusion number. In
the first case, the interactions governing the dynamics can be considered as "spatially
controlled" whereas in the second case they are "temporally controlled".

4 Consequences for Modeling

These distinct types of arrangements, depending on the regime, contribute to making the
delineation of regimes useful, especially from a modelling perspective. Quite generally,
the velocity adopted by a pedestrian i at the next time step t +δ t can be modelled as the
result of a minimisation of a suitably defined cost function Ci(⃗v, . . .) [18–20], viz.,

v⃗i(t +δ t) = argmin
v⃗∈R2

Ci(⃗v, . . .). (5)

In principle, Ci can be a very complex function of all environmental variables Et :=
{⃗r j(t), v⃗ j(t), . . .}, not to mention the agent’s desired velocity, v⃗des,i, i.e., the velocity
that would be taken were the agent alone. However, in the spirit of Landau’s theory
of phase transitions in condensed matter, we aspire to get a simple perturbative expan-
sion of Ci, drawing on the symmetries of the system. By definition, if there exists
such a symmetry S , then the cost is identical for all symmetric configurations, i.e.,
Ci

(
S · (⃗v,Et)

)
= Ci

(⃗
v,Et

)
. Here, there are no conventional symmetries, but the above

considerations strongly suggest that (⃗v,Et) is dominated by the Intrusion and Avoidance
variables. Accordingly, all (⃗v,Et) sharing the same Ini(⃗v,Et) and Avi(⃗v,Et) can be re-
garded as ‘symmetric’ in some loose sense. To compute Ini(⃗v,Et) and Avi(⃗v,Et) with
the test velocity v⃗, it is sensible to evaluate Ini in the current environment Et , except that
agent i is shifted from r⃗i to r⃗i+ v⃗δ t, and to evaluate Avi in the current environment, except



Classification of Pedestrian Crowds by Dimensionless Numbers 7

that agent i assumes velocity v⃗ instead of v⃗i(t) (positional changes at t +δ t are of higher
order). Therefore, we arrive at

v⃗i(t +δ t)≃ argmin
v⃗∈R2

Ci

[
Ini(⃗ri + v⃗δ t),Avi(⃗v)

]
. (6)

In [4], we showed that a perturbative expansion of Eq. 6 around the non-interacting
situation (In,Av = 0) leads to

Ci(⃗v)≈ Avi(⃗v)+
1
α

[⃗
vdes,i +β∇Ini (⃗ri(t))− v⃗

]2
, (7)

with α > 0, β ≥ 0, which is a first-order model in the newly introduced variables that we
will call the Av ⋆ In-model. We will refer to the case α → 0 as the In-model and β = 0
as the Av-model. The actual velocity of agent i relaxes towards the minimum of Ci on a
time-scale τR.2

The purpose of these models is not to describe pedestrians crowds in every conceivable
situation. Rather, the models should give some additional insights into the relevance of the
characteristic numbers introduced, especially through their limitations! These limitations
become conspicuous if we study the models in the asymptotic regimes.

As an example for the asymptotic In-regime (Av ≪ 1), we simulate the Waiting sce-
nario. In the In-model, the agents avoid intrusions and thus the crowd self-organises into
a spatially homogeneous state. On the contrary, in the Av-model, the crowd will stay
in its (possibly very inhomogeneous) initial condition, given that all Avi are vanishing.
On the other hand, in the asymptotic Av-regime (In ≪ 1), here illustrated with a sparse
CrossFlow, the In-model fails to reproduce its basic features, namely, successful collision
avoidance: the agents keep bumping into each other. In contrast, the Av-model solves
these conflicts convincingly.

The limitations of models based solely on either Av or In become even more apparent
when we consider scenarios that depart from the axes of the (Av, In) plane. For instance,
all models can replicate the formation of lanes. However the In-model struggles to deal
with the impending collisions before lane formation, and the Av-model fails to maintain
sufficient spacing between individuals within each lane. Besides, the lanes will not dis-
solve even after the two crowds have passed each other. In [4], we show that only the
Av⋆ In-model displays these features correctly, resulting in a very similar temporal evolu-
tion of In and Av if compared to the experimental data from [12]. All described features
of the models can be seen in the videos uploaded at [21].

5 Conclusion

In order to delineate different crowd flow regimes, we have introduced the dimensionless
Intrusion number In, based on the desire to preserve one’s personal space, and the (equally

2We chose the following parameters α = 2/3 s2/m2, β = 0.02/s, vmax = 1.7m/s, vdes = 1.4m/s, and
τR = 0.1s. We have increased the agents’ size in the Av-part of the model to a social radius ℓsoc = 0.4m.
A small scalar is subtracted from Ini j to make it continuous across the cut-off radius. Note that, in Eq. 7,
we omitted the dependencies of Avi and Ini on the positions and velocities of the other agents.
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dimensionless) Avoidance number Av, grounded in the anticipation of collisions. Classi-
fying flows according to these numbers succeeds in generating a neat diagram of crowd
scenarios. The way in which the crowd self-organises was found to be best described by
‘distances’ in time (TTCs) in the low-In regime and by distances in space in the low-Av
regime. In the future, studying distributions or (cross) correlations between Av and In
might give complementary insight into the nature of the different crowd regimes.

Based on Av, In, or on these two numbers, perturbative models have been put forward.
Similarly to Fluid Mechanics, where dimensionless numbers guide the choice between
different approximations, the dynamics of crowds can be approached in each regime by
perturbative expansions, which yield pedestrian models applicable in the corresponding
regime (and only there). This finding has a much broader impact on agent-based pedes-
trian models, as Avi or Ini appear in many of these [17, 22–25]. The study presented
here should therefore be extended to organise the plethora of agent-based models and to
connect their realm of applicability to specific crowd regimes.

To conclude with some limitations of the present work, it makes no doubt that Av and
In cannot capture all possible crowd behaviours. For instance, the proposed models can-
not directly reproduce the fundamental diagram. This hints at additional mechanisms that
have been overlooked so far, such as asymmetric interactions e.g. due to perception, ab-
solute time-gaps, and more complex shapes that might depend on the velocity. A more re-
alistic description of pedestrian shapes and mechanical interactions would also be needed
when In reaches larger values. Further dimensionless numbers could be introduced to
capture more features.
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