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Abstract This paper presents guidance on data-fitting approaches in the context of pedes-
trian and evacuation dynamics research. In particular, it examines parametric and non-
parametric regression techniques for analysing speed/flow density relationships. Para-
metric models assume predefined functional forms, while non-parametric models provide
flexibility to capture complex relationships. This paper evaluates a range of traditional
statistical approaches and machine-learning techniques. It emphasises the importance
of weighting unbalanced datasets to enhance model accuracy. Practical applications are
illustrated using traffic and pedestrian evacuation data.

This paper is intended to stimulate discussion on best practices for developing, cali-
brating, and testing macroscopic and microscopic evacuation models. It does not pre-
scribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an
overview of existing methods and analyses their advantages and limitations.

Keywords data fitting · speed/flow density relationship · pedestrian dynamics · traffic
dynamics

1 Introduction

How the speed/flow of pedestrians and traffic depends on the density plays an impor-
tant role in transportation and safety research, as this relationship characterises transport
systems, and informs the design and management of transport facilities. For example, the
flow’s maximum value indicates a system’s capacity, a concept used at spatial scales rang-
ing from exit doors to cities [1]. Increasing traffic density beyond this point will render
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the system less efficient [2]. These relationships also represent a common tool for various
engineering applications, including capacity analysis of evacuation routes or pedestrian
flow prediction in various egress components. Moreover, macroscopic evacuation mod-
els rely on the relationships between speed/flow and density to simulate evacuation out-
comes. In microscopic evacuation models, the relationships emerge from the agent-based
behavioural rules [3–6]. Because of the importance of these relationships, many studies
have reported empirical speed, flow, and density data and attempted to describe the trends
in terms of mathematical functions that facilitate prediction, and comparison to other con-
texts. This process requires the fitting of mathematical functions to the data, which is the
subject of this paper.

This paper explains how to fit both parametric regressions and non-parametric regres-
sions to data. Practical applications are illustrated using pedestrian and traffic evacuation
data collected during real-world scenarios. We have published all the data in an open
repository [7–9], as well as the scripts to establish the regressions [10].

2 Parametric regression

Parametric regression involves modelling the relationship between the dependent and in-
dependent variables using a predetermined equation with a fixed number of parameters.
This means that the shape and form of the regression curve are determined by the chosen
speed/flow density relationship (model) and the estimated parameter values. Well-known
examples include the parabolic model (Greenshields [11] in traffic dynamics, equivalent
to Older [12], Fruin [13], and many others in pedestrian dynamics), the bi-linear model of
Daganzo [14] (traffic dynamics) and the exponential model (first discussed in traffic dy-
namics by Newell [15] and Franklin [16] but also know as the model of del Castillo and
Benı́tez [17] and equivalent to Weidmann [18] in pedestrian dynamics). These macro-
scopic models can be fitted to data by minimising the sum of squares of the speed predic-
tion errors.

The advantage of these parametric models is that they can incorporate prior knowledge
that suggests the trend of the data. Although most of the early models (such as Daganzo’s
model [14]) are based on empirical data, they were later derived from rules used in agent-
based models. In addition, many models use parameters with physical meaning, making
it easier to measure and interpret these parameters in real-world applications.

Empirical speed-density data are typically unbalanced, simply because higher pedes-
trian and vehicle densities are less common than lower densities. This leads to a poor fit
for high densities. To counteract this effect, models can be fitted by weighting the sum of
least squares, prioritizing points with fewer or more distant neighbours, as suggested by
Qu et al. [19]. We demonstrated the need to weight the residuals by fitting the model of
Underwood [20] to data that was collected during the 2019 Kincade wildfire evacuation
(see Fig. 1) [8, 21]. Note that higher traffic density conditions are rare in this dataset:
98.6 % of the 69.116 data points have a density below 20 veh/km/lane. The importance
of weighting can be demonstrated analogously with pedestrian data.
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Figure 1 Left: The speed-density data on US 101 during the 2019 Kincade Fire, USA [22] and the fitted
exponential model of Underwood [20], with and without applying the weights proposed by Qu et
al. [19]. Note that the simple two-parameter model of Underwood does not accurately represent
real traffic dynamics for low traffic densities. Right: The speed-density data from evacuation
exercises with preschool children [23]. Note that the dimensionless density is determined using
the methodology established by Predtechinski and Miliniski [5]. The fitted model is the three-
parameter model of Weidmann [18]. The need to weight data decreases when the dataset is
better balanced, as seen in this evacuation experiment, and when the model more accurately
captures the trend.

3 Non-parametric regression

As shown in Fig. 1, predefined speed-density relationship may represent the true trend
inaccurately, leading to biased predictions. Non-parametric regression, on the other hand,
offers more flexibility. It allows us to compare different datasets and can provide better
estimates of certain key parameters, such as the free-flow speed or the capacity. The values
of these parameters can be difficult to obtain from parametric regression. For example,
the free-flow speed (speed values at 0 density) in Fig. 1 clearly depends on the ability of
the model to fit the data well in the low-density region.

3.1 Traditional non-parametric regression

The trend of a dataset can be represented by a moving average. In its simplest form, the
number of neighbouring data points is considered fixed. However, the average value can
also be obtained by looking at all the neighbours within a fixed window, often referred to
as kernel smoothing. In Fig. 2, a Gaussian kernel smoothing has been applied.

The same smoothing technique can be used to calculate empirical percentiles and visu-
alise the dataset’s variation, including heteroscedasticity and asymmetry.

3.2 Machine learning regression

Machine learning algorithms have become increasingly important in recent years. In this
section, we will explore some popular non-parametric regressions: Kernel Ridge Regres-
sion (KRR), Support Vector Regression (SVR), and Gaussian Process Regression (GPR).
KRR and SVR offer a deterministic single predicted speed for a given density, while GPR,
a probabilistic regression, provides a speed probability distribution. Each of the men-
tioned algorithms employs the kernel trick, which transforms input features into a higher-
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Figure 2 The speed-density data on US 101 during the 2020 Glass Fire, USA [21]. The weighted moving
average and the empirical percentiles employ a Gaussian Kernel Smoothing. Here, the per-
centiles are calculated by linear interpolation of the cumulative distribution function [29]. The
length scale of the kernel is optimised by employing cross-validation.

dimensional space to capture complex relationships. The radial basis function effectively
considers an infinite series of polynomials (Mercer’s theorem), which contributes to its
flexibility in modelling complex functions [24]. We will also discuss hyper-parameter
optimization, which is an important process required to improve the performance of the
algorithms.

Kernel Ridge Regression (KRR) performs a ridge regression on the data after it has
been transformed into a higher dimensional space (after the kernel trick has been applied).
Ridge regression then minimises the sum of squared errors in the transformed space. The
two key hyperparameters are alpha (the regularisation) and gamma (the range of influence
of the kernel) [25].

Support Vector Regression (SVR) optimises the position of a hyperplane by min-
imising the prediction error while ensuring a margin constraint. SVR is robust to out-
liers because it only depends on support vectors (data points closest to the hyperplane).
The hyperparameters are the regularisation parameter C and the tolerance margin epsilon
[26, 27].

Gaussian Process Regression (GPR) probabilistically models the speed-density rela-
tionship as a Gaussian process, estimating both a mean function and a covariance function
for the expected speed. It captures the distribution of potential functions fitting the training
data by utilizing a prior function distribution and kernel function to shape expectations.
The posterior distribution over functions is then calculated via Bayes’ rule to make speed
predictions [28].

3.3 Hyperparameter optimization

In the context of regression, an over-fitted model can result in a very low training error
(i.e., the model predicts the training data very accurately), but a high test error (i.e., the
model performs poorly on new data [30]). On the other hand, an under-fitted model can
result in a high training error and a high test error. One approach to finding an adequate
fit (see Fig. 3) is to optimise the hyperparameters by means of cross-validation [31].

Cross-validation is a widely used technique, used to evaluate the performance of a
model and to select the best hyperparameters. The idea is to partition the data into multiple
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Figure 3 An example of an under-fitted (left), well-fitted (centre) and over-fitted (right) kernel ridge re-
gressions. The under-fitted regression fails to capture the trend of the data accurately, while the
over-fitted model has incorporated noise of the dataset in the regression.
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Figure 4 The speed-density data from evacuation exercises with preschool children [23] and three popular
machine-learning regression techniques (Kernel Ridge, Support Vector, and Gaussian Process).
All methods deliver similar regressions. Gaussian Process Regression is computationally the
most expensive, but also provides confidence intervals.

subsets, or folds, and to train the model on some sets and test it on the remaining sets. This
process is repeated for all combinations of training and testing sets, and the performance
metrics are averaged across all folds [31]. Here, a five-fold cross-validation is performed.
The model is trained on 4 folds and tested on the remaining fold. This process is repeated
5 times, with each fold serving as the testing set once.

An example is given in Fig. 4, in which the three earlier mentioned algorithms have
been applied to an evacuation exercise with preschool children [23]. The optical parame-
ters were the result of a grid search (an exhaustive technique that tries every combination
of hyperparameters specified), during which the performance was measured by a five-fold
cross-validation.

4 Conclusion

This paper serves as a guide for researchers in the field of pedestrian and evacuation
dynamics, presenting practical approaches for developing, calibrating, and testing both
macroscopic and microscopic models. Rather than proposing a universal solution, it
outlines key methods and provides practical guidelines for their application to different
datasets.

What follows is a list of practical recommendations

• Consider both parametric and non-parametric regression: parametric models
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offer interpretability and can represent physical process that occur in the flow, while
non-parametric models offer flexibility and are great to compare data without the
biased or limitation of a parametric model.

• Address unbalanced datasets: when working with unbalanced datasets, such as
those commonly found in pedestrian and traffic dynamics research, weighting tech-
niques should be applied to improve model accuracy.

• Study outliers and artefacts: attempt to understand them (e.g., measurement equip-
ment malfunction, unique person, etc.)

• When choosing a parametric model, prefer models with few parameters that fit
well to the data.

• Optimize Hyperparameters: this is crucial for improving the performance of ma-
chine learning regression models. Employ techniques like cross-validation to eval-
uate model performance and select the best hyperparameters for your dataset.

• Question the outcome of machine learning algorithms and traditional fits. Check
if the regressions have a physical meaning (e.g., monotonic functions).
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[7] Najmanová, H., Ronchi, E.: Data for: Experimental data about the evacuation of
preschool children from nursery schools, Part II: Movement characteristics and be-
haviour (2023). doi:10.5281/ZENODO.7377045

[8] Rohaert, A., Kuligowski, E.D., Ardinge, A., Wahlqvist, J., Gwynne, S.M., Kimball,
A., Noureddine Bénichou, Ronchi, E.: Dataset of traffic dynamics during the 2019
Kincade Wildfire Evacuation (2022). doi:10.5281/ZENODO.7410114

[9] Rohaert, A., Araghi, N.J., Kuligowski, E.D., Ronchi, E.: Dataset of
traffic dynamics during the 2020 Glass Wildfire Evacuation (2023).
doi:10.5281/ZENODO.7483487

[10] Rohaert, A.: Data fitting script for speed/flow density relationships (2024).
doi:10.5281/zenodo.10990917

[11] Greenshields, B., Bibbins, J., Channing, W., Miller, H.: A study of traffic capacity.
Highway Research Board proceedings (1935)

[12] Older, S.J.: Movement of pedestrians on footways in shopping streets. Traffic Engi-
neering & Control 10, 160 (1968)

[13] Fruin, J.J.: Designing for pedestrians a level of service concept. Polytechnic Uni-
versity (1970)

[14] Daganzo, C.F.: The cell transmission model: A dynamic represen-
tation of highway traffic consistent with the hydrodynamic theory.
Transportation Research Part B: Methodological 28, 269–287 (1994).
doi:10.1016/0191-2615(94)90002-7

[15] Newell, G.F.: Nonlinear Effects in the Dynamics of Car Following. Operations
Research 9(2), 209–229 (1961). doi:10.1287/opre.9.2.209

[16] Franklin, R.: The structure of a traffic shock wave. Civil Engineering Pulb. Wks.
Rev 56, 1186–1188 (1961)

http://dx.doi.org/10.1287/opre.4.1.42
http://dx.doi.org/10.1007/978-1-4939-2565-0_59
http://dx.doi.org/10.5281/ZENODO.7377045
http://dx.doi.org/10.5281/ZENODO.7410114
http://dx.doi.org/10.5281/ZENODO.7483487
http://dx.doi.org/10.5281/zenodo.10990917
http://dx.doi.org/10.1016/0191-2615(94)90002-7
http://dx.doi.org/10.1287/opre.9.2.209


8 A. Rohaert et al.

[17] Del Castillo, J.M., Benı́tez, F.G.: On the functional form of the speed-density rela-
tionship - Part I: General theory. Transportation Research Part B: Methodological
29, 373–389 (1995). doi:10.1016/0191-2615(95)00008-2

[18] Weidmann, U.: Transporttechnik der Fussgänger: Transporttechnische
Eigenschaften des Fussgängerverkehrs. Tech. rep., ETH Zurich (1993).
doi:10.3929/ETHZ-B-000242008

[19] Qu, X., Wang, S., Zhang, J.: On the fundamental diagram for freeway traffic: A
novel calibration approach for single-regime models. Transportation Research Part
B: Methodological 73, 91–102 (2015). doi:10.1016/j.trb.2015.01.001

[20] Underwood, R.T.: Speed, volume and density relationships. Quality and Theory of
Traffic Flow. A Symposium, Yale University Bureau of Highway Traffic pp. 141–
188 (1961). Publisher: Bureau of Highway Traffic, Yale University

[21] Rohaert, A., Janfeshanaraghi, N., Kuligowski, E., Ronchi, E.: The analysis of traffic
data of wildfire evacuation: the case study of the 2020 Glass Fire. Fire Safety Journal
141 (2023). doi:10.1016/j.firesaf.2023.103909

[22] Rohaert, A., Kuligowski, E.D., Ardinge, A., Wahlqvist, J., Gwynne, S.M., Kimball,
A., Bénichou, N., Ronchi, E.: Traffic dynamics during the 2019 Kincade wildfire
evacuation. Transportation Research Part D: Transport and Environment 116 (2023).
doi:10.1016/j.trd.2023.103610
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