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Abstract Predicting pedestrian dynamics is a complex task as pedestrian speed is in-
fluenced by various external factors. This study investigates neighboring factors that
can be used to improve pedestrian walking speed prediction accuracy in both low- and
high-density scenarios. Different factors are proposed, including Mean Distance, Time-
to-Collision, and Front Effect, and data for each factor is extracted from different public
datasets. The collected data at time t is used to train a neural network to predict the pedes-
trian walking speed at time t +∆t. Predictions are evaluated using the Mean Absolute
Error. Our results demonstrate that incorporating the Front Effect significantly improves
prediction accuracy in both low- and high-density scenarios, whereas the Mean Distance
factor only proves effective in high-density cases. On the other hand, no significant im-
provement is observed when considering the Time-to-Collision factor. These preliminary
findings can be utilized to enhance the accuracy of pedestrian dynamics predictions by
incorporating these factors as additional features within the model.
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1 Introduction

Predicting pedestrian dynamics is a complex task as pedestrian walking speed is influ-
enced not only by intrinsic factors, such as pedestrian’s objectives and characteristics,
but also by external factors like social groups [1], crowd density [2], environmental con-
ditions [3, 4], among others. Consequently, incorporating these external factors can im-
prove the accuracy of predicting pedestrian behaviors. For instance, better prediction
accuracy in pedestrian trajectories is archived by providing neural networks additional
contextual information, such as integrating environmental layouts via hierarchical LSTM-
based neural network [5], determining most interactions with neighbors using attention

Collective Dynamics V9, A178:1–8 (2024) Licensed under

http://collective-dynamics.eu/
mailto:\{huu-tu.dang, benoit.gaudou, nicolas.verstaevel\}@ut-capitole.fr
http://dx.doi.org/10.17815/CD.2024.178
http://collective-dynamics.eu/
http://collective-dynamics.eu/index.php/cod/issue/view/V9
http://collective-dynamics.eu/index.php/cod/article/view/A178
http://creativecommons.org/licenses/by/4.0/


2 Huu-Tu Dang et al.

mechanisms [6,7], or including time-to-collision terms into the loss function [8,9]. How-
ever, there remains a need to evaluate the impact of these factors, particularly those de-
rived from neighboring pedestrians, on the performance of pedestrian dynamics prediction
across different scenarios.

In this article, we propose and investigate different neighboring factors that can be used
to improve pedestrian walking speed prediction accuracy in both low- and high-density
scenarios. To do this, two types of datasets are prepared corresponding to these scenarios
and data is analyzed using a neural network approach.

2 Methodology

This section presents data extraction for the proposed neighboring factors from differ-
ent public datasets and our method to analyze the impact of these factors on predicting
pedestrian walking speed.

2.1 Data extraction

We propose to investigate the impact of the following external factors derived from neigh-
boring: Mean Distance, Time-to-Collision, and Front Effect. For each pedestrian i, the
proposed factors are extracted with respect to each neighboring pedestrian j of its K near-
est neighbors. Let pi = (xi,yi), vi = (vxi,vx j), and ri represent the position, velocity, and
radius of the pedestrian i, respectively.

The walking speed of pedestrian i is denoted as ∥vi∥ where ∥v∥ represents the Euclidean
norm of vector v. The relative position and velocity between the pedestrians i and j are
denoted as pi j = (∆xi j,∆yi j) = (xi − x j,yi − y j) and vi j = (∆vxi j ,∆vyi j) = (vxi − vx j ,vyi −
vy j), respectively. The description of these factors is as follows:

• Mean Distance (MD) is computed as the mean Euclidean distance to each of the K
nearest neighbors. The MD represents local density information around the pedes-
trian; for example, a smaller MD indicates a higher local density level surrounding
the pedestrian.

dK
i =

1
K

K

∑
j=1

√
(xi − x j)2 +(yi − y j)2, (1)

• Time-to-Collision (TTC) between the two pedestrians i and j, denoted as τi j, is es-
timated as the remaining time until collision if they continue to move with their cur-
rent velocities [10]. The TTC is a sufficient indicator to model pedestrian-pedestrian
interactions [10] rather than only relative distance. The TTC value is assigned to
a large positive number if no collision is anticipated between the two pedestrians.
Here, the smallest TTC value in the K nearest neighbors is selected.

τ
K
i = min

1≤ j≤K
τi j = min

1≤ j≤K

−pi j · vi j −
√

(pi j · vi j)2 −∥vi j∥2(∥pi j∥2 − (ri + r j)2)

∥vi j∥2 ,

(2)
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• Front Effect (FE) considers the K nearest neighbors who fall in a 180-degree field
of vision of the pedestrian i. The reason for choosing this factor is that pedestrians
are more influenced by neighbors who appear in their immediate field of vision.

FEK
i = {∥vi∥,∆xi j,∆yi j,∆vxi j ,∆vyi j |1 ≤ j ≤ K,0 ≤

vi · v j

∥vi∥∥v j∥
≤ 1}. (3)

In addition to these aforementioned neighboring factors, fundamental information is
also extracted, which includes pedestrian speed and its relative position and relative ve-
locity with respect to its neighboring pedestrians.

2.2 Datasets

Data is extracted from three widely used public pedestrian datasets using different values
of K (3, 5, 7, and 10). The fundamental characteristics of these datasets are presented in
Tab. 1. Given that high density is defined as greater than 1 pedestrian/m2 [11], the datasets
are classified as low-density (ETH [12] and UCY [13]) and high-density (FZJ [14]). The
framerates of the low-and high-density datasets are 2.5 fps and 16 fps, respectively.

Dataset Source Data Setting No. Traj Avg. Avg.
Density Min TTC
(1/m2) (s)

Low density ETH [12] ETH Outdoor 361 0.15 15.64
HOTEL Outdoor 389 0.13 4.82

UCY [13] ZARA01 Outdoor 148 0.21 6.30
ZARA02 Outdoor 204 0.27 6.71
UNIV Outdoor 434 0.38 6.53

High density JÜLICH [14] bi b 03 Lab 480 1.00 4.42
bi b 04 Lab 743 2.32 2.84
bi b 05 Lab 643 2.64 2.57
bi b 06 Lab 830 3.0 2.34
bi b 07 Lab 606 3.45 2.08
bi b 08 Lab 703 3.78 2.27

Table 1 Fundamental characteristics of different datasets.

2.3 Method

Our method employs a Multilayer Perceptron (MLP) neural network with h hidden layers
to learn data at time t and predict the pedestrian walking speed at time t +∆t. It has
been demonstrated that the MLP neural network is more effective in predicting pedestrian
walking speed than classical models based on fundamental diagram [15]. Different inputs
are fed into four neural networks:
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• The first network is the baseline network whose input consists of the following
fundamental information: the pedestrian’s current speed, relative positions, and
relative velocities to the K nearest neighbors.

NNK
1 = MLP(∥vi∥,∆xi j,∆yi j,∆vxi j ,∆vyi j |1 ≤ j ≤ K). (4)

• In the second neural network, the mean distance of K nearest neighbors is included
as an additional feature along with the fundamental information:

NNK
2 = MLP(∥vi∥,∆xi j,∆yi j,∆vxi j ,∆vyi j ,d

K
i |1 ≤ j ≤ K) (5)

• The third neural network incorporates the smallest TTC in the K nearest neighbor
as an additional feature along with the fundamental information:

NNK
3 = MLP(∥vi∥,∆xi j,∆yi j,∆vxi j ,∆vyi j ,τ

K
i |1 ≤ j ≤ K) (6)

• The final neural network uses the fundamental information to the K nearest neigh-
bor in front:

NNK
4 = MLP(FEK

i ) (7)

The architecture of the MLP neural network is h = (6, 3), meaning there are two hidden
layers: the first and second layers contain 6 nodes and 3 nodes, respectively. The input
layer size of each neural network depends on the value K in each dataset. Training is
conducted separately for low-density and high-density datasets, using the Adam optimizer
with a learning rate of 0.001 and the Mean Squared Error as the loss function. Each
dataset is split into two subsets, with 80% used for training and 20% used for testing. The
Mean Absolute Error (MAE) is used to evaluate the predictions. All computations are
performed on an AMD Ryzen 7 4800H CPU with 16 GB of memory.

3 Results

For each neural network, the average MAE result is computed from 30 trainings. Then,
the average MAE results of the other neural networks are compared with the baseline
result of NNK0

1 with K0 = 3 to calculate the improvement percentages:

IPK
i =−

MAE(NNK
i )−MAE(NNK0

1 )

MAE(NNK0
1 )

×100%, for i = 1,2,3,4 and K = 3,5,7,10. (8)

where MAE(NNK
i ) presents the MAE of actual speed ∥v j∥ and the corresponding speed

predicted by the neural network NNK
i over N data samples:

MAE(NNK
i ) =

1
N

Σ
N
j=1|∥v j∥− v̂NNK

i
j |. (9)
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Fig. 1 shows the MAE and improvement percentage results of predictions of different
neural networks over different numbers of neighbors in both low-density and high-density
datasets. It can be observed from both low-density and high-density datasets that the
performance of all neural networks consistently improves when the number of neighbors
increases. This trend indicates that including more neighbors provides more contextual
information so neural networks can learn better.

(a) Low-density dataset with ∆t = 0.4s. (b) High-density dataset with ∆t = 0.375s

Figure 1 Improvement results in (a) Low-density dataset and (b) High-density dataset.

In the low-density dataset (see Fig. 1(a)), adding TTC to the neural networks worsens
prediction accuracy. This can be explained by the fact that most of the time-to-collision to
neighbors in low-density scenarios is typically large, while the interaction time horizon is
2 – 4s [10]. Consequently, at the macroscopic level, the influence of this factor on pedes-
trian movement becomes trivial in low-density situations. On the other hand, FE presents
the best improvement in prediction accuracy (approximately 5.8% for NNK

4 with K = 10),
while the effect of MD with NN2 shows similar results with NN1. This observation sug-
gests that in low-density situations, the FE is the most important factor, while the impact
of MD is not particularly meaningful.

In the high-density dataset, adding any proposed neighboring factors to the neural
networks helps to improve the results. Using MD and FE shows strong improvements
(around 4.5% for NNK

2 with K = 10 and 4.0 % for NNK
4 with K = 10), while adding

TTC slightly improves prediction accuracy. This suggests that the MD and FE are more
effective than TTC in high-density scenarios.

Based on the results above, the two factors that yield the best improvement are Mean
Distance and Front Effect and thus are chosen for comparison. For each number of K, the
improved accuracy for MD and FE is calculated to the results of the neural network NNK

1 :

IPK
i =−MAE(NNK

i )−MAE(NNK
1 )

MAE(NNK
1 )

×100%, for i = 2,4 and K = 3,5,7,10. (10)

Fig. 2 presents the comparison of improvement percentage between the low- and high-
density datasets for Mean Distance and Front Effect over different numbers of K.
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(a) Mean Distance (b) Front Effect

Figure 2 Comparison of percentage of improved accuracy between low- and high-density datasets over
different numbers of K using (a) Mean Distance and (b) Front Effect.

For MD, there is a clear difference in improvement between low- and high-density
situations. The improvement in the high-density dataset is much higher than that in the
low-density dataset for all different numbers of K neighbors. The lowest and highest
improvement in the high-density dataset is 2.344% and 3.195%, respectively, while the
highest improvement in the low-density dataset is just 0.793%. This indicates that MD
in high-density scenarios provides more information than in low-density scenarios as it
describes the local density surrounding pedestrians.

On the other hand, FE exhibits a noticeable improvement in accuracy in both low-
density and high-density datasets. The highest improvement in the low-density dataset is
2.893 % with K = 5, while the improvement results remain stable from 2.103 to 2.361% in
the high-density dataset. This suggests that pedestrian movement is primarily influenced
by the neighboring pedestrians in directional relevance. These preliminary results can
be incorporated into the simulation models and neural network algorithms to improve
accuracy.

4 Conclusion

This paper investigates neighboring factors that can be used to improve pedestrian walking
speed prediction accuracy in both low- and high-density scenarios. The data for these fac-
tors, collected from various public datasets, is analyzed using a neural network approach.
It has been demonstrated that incorporating the appropriate contextual information from
the neighboring pedestrians into the neural network’s input can significantly improve pre-
diction accuracy. The key finding reveals that the Front Effect is an impactful factor in
both scenarios, while Mean Distance becomes particularly crucial only in high-density
situations. Another factor is that Time-to-Collision has no significant effect at low den-
sity and is trivial at high-density situations. These preliminary findings can be utilized to
enhance the accuracy of pedestrian dynamics predictions by incorporating these factors
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as additional features within the model.
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