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Abstract The Braess paradox is a well-known phenomenon initially observed in road
traffic flow. It points out that increasing network capacity can lead to poorer performance
in congested situations, when the drivers attempt to optimise their travel time individually.
This paradox is not limited to road transport, but also extends to various information net-
works. In this article, we examine the Braess paradox in a closed network where demand
remains constant. First, we determine the user and global optima of the deterministic sys-
tem in stationary states with flow balancing. We present explicit formulae for the density
intervals at which the Braess paradox occurs. We then compute Monte Carlo simulations
of a stochastic mesoscopic traffic model using aggregate data obtained from a queueing
model to explore the results. Static assignment models match the deterministic station-
ary results. In addition, the simulations assess the effectiveness of dynamic assignment,
whereby drivers select routes in real time to minimise travel time. Interestingly, behaviour
with dynamic assignment deviates from the generic static assignment results, particularly
in highly congested situations. These results emphasise the significance of dynamic route
selection in relation to Braess’s paradox.
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1 Introduction

The Braess paradox was revealed in 1920 in the seminal work of Arthur Pigou [1] and was
mathematically formulated in 1968 by Dietrich Braess [2]. The paradox points out that in
congested traffic, increasing network capacity by introducing additional roads can make
the situation worse if the users optimise their travel times individually. Essentially, the
paradox hinges on the distinction between the user (or Nash) equilibrium and the system
equilibrium, as formalised in traffic engineering by Wardrop’s principles [3]. Although
the paradox has been highlighted and studied for over 60 years, designing networks for
selfish agents is still challenging today [4-8].

The Downs-Thomson paradox, also known as Paradox of Traffic, is related to Braess
paradox. It describes the situation where new additional roads lead to more traffic jams
in the long term. This is related to the fact that new roads lead to an increased traffic
demand. In contrast, Braess paradox assumes a constant demand.

Initially, the paradox concerns road traffic networks [9] and its prevalence in random
networks [10, 11]. The Braess paradox in traffic networks has been frequently docu-
mented in practice, for example in Seoul (South Korea) [12, 13], Stuttgart (Germany) [14]
or Manhattan (United States) [15]. The paradox has also been observed in many other ar-
eas, such as communication networks [ 16, 17], electrical and hydraulic networks [18-24],
biological organisms [25-27], chemical reaction networks [28,29], mechanical networks
(spring networks) [30,31], or quantum transport [32—34]. See also [35] from D. Braess
homepage listing research articles on the paradox until 2019 and [36] for a systematic bib-
liographic review covering the period 1968—-2022. The Braess paradox is also analysed
through the prism of game theory, where it is generally considered as a non-cooperative
multiplayer game [37-39], and is even found in basketball games [40]. Braess paradox
is multidisciplinary and seems to be more and more topical. Fig. | shows the number of
research articles per year on Braess paradox, traffic flow, game theory and communication
networks. The trends are clearly upward.

s S

g N —— ’Braess paradox’ § ~| = ’Braess paradox’

i = & ’Traffic flow’ r s | — & ’Information’

e & *Game theory’ g « & Traffic flow’

§ o —— & ’Communication’ E _| = & ’Game theory’

g S 13} & ’Communication’

) — =1 o

2 = S-

2 24 5

= v q{_n) % —

: g

O o = = o

\ \ \ \ \ \ \ \ \ \
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020

Year Year

Figure 1 Number of research articles from 1980 to 2023 with the tags ’Braess paradox’, *Traffic flow’,
’Game theory’, and ’Commumication’ in the Google Scholar engine. Left panel: cumulative
number of research articles. Right panel: number of articles per year.



Exploring the Braess Paradox: Static Versus Dynamic Assignment 3

1.1 Braess paradox

Consider a network with an origin O, a destination D, and two internal nodes A and B. Ini-
tially, only two routes are possible: crossing through A (route OAD) or crossing through B
(route OBD), see Fig. 2. The route OAD begins on an urban road c4, where the travel time
is proportional to the number of users and is characterized by a time headway coefficient
. This coefficient represents the time it takes for a vehicle to reach the position of the
vehicle in front, assuming a constant speed. The route then becomes a highway hy4, which
has a large capacity and a constant travel time 7j,.

The route OBD is the opposite, starting from the highway hp before the city centre
cp. In the example shown in Fig. 2, there are N = 10 vehicles, @ = 1 and 7;, = 10. The
user optimum distributes equally n = 5 vehicles on each of the two routes and, assuming
that the drivers travel together in a static framework, the travel time from the origin to
the destination is wn + T, = 5+ 10 = 15 for all the vehicles. Now consider a new route,
the shortcut, which immediately connects A to B instantaneously and is used by m €
[0,N] vehicles. This is an artificial concept since the travel time is zero and therefore,
theoretically, the length of this new route is zero. In fact, all the vehicles have individually
interest to switch to the route OABD composed of the roads c4 and cp so that, in user
equilibrium, n = 0, m = 10 and, assuming again that the drivers all travel together, the
travel time is wm + wm = 10+ 10 = 20 for all the vehicles. This is the Braess paradox:
we increase the capacity of the network and, for the same demand, the user’s travel time
increases.

User optimum

without with
- -
T, =10 n=>5 n=0
m=20 m=10
N=10 T=15 T =20
oo oo s
ﬁ ﬁ o(n+m) o(n+m)
22 02500
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o "
T7,=10

Figure 2 Tllustrative example of the Braess Paradox with N = 10 vehicles on a network with origin O and
destination D. There are three possible routes: OAD, OBD and OABD. The parameter m € [0, N]
is the number of vehicles taking the route OABD with the shortcut from A to B. The roads ca
(from O to A) and cp (from B to D) are city centres where the travel time is proportional to the
demand (headway coefficient @ = 1), while the roads h4 (from A to D) and hg (from O to B)
are highways with large capacity and constant travel time 7;, = 10. The user’s travel time is 15
without the route OABD, while it increases to 20 with the shortcut.
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1.2 Objectives and organisation of the manuscript

Although the static illustration described in the previous section can be instructive, it
does not take into account complex dynamical aspects of road traffic flow. In fact, the
illustration shown in Fig. 2 is a static depiction of how vehicles move on the road. Most
current studies on the Braess paradox are time-dependent analyses based on dynamic
traffic models. The Braess paradox consists of coupling the traffic model with an optimal
control strategy. For open systems, traffic demand is controlled by entry and exit rates,
and the number of vehicles in the system can fluctuate. For closed systems, the number
of vehicles is conserved and traffic demand is constant at any time. Macroscopic network
traffic models depend on demand and supply functions on edges and nodes [41-43] of the
network, while macroscopic traffic flow models are based on nonlinear partial differential
for the flow, the density and the mean speed [44]. Mesoscopic traffic models rely on
kinetic equations for the probability density function of the vehicle distribution [18, 24,
45,46], or queuing models [47-50]. Microscopic approaches model the motion of each
vehicle and allow to include individual route choice models, but these can quickly prove
computationally intensive [51-54]. More recent models take into account for real-time
traffic state information, dynamic assignment and stochastic aspects [6,55,56].

In this article, we examine the Braess paradox in a closed system. The traffic demand
remains constant and we also assume certain symmetry properties. First, we use the de-
terministic system in stationary states with flow balancing to determine the density ranges
at which the Braess paradox arises. We systematically compare the user optimum, where
the Braess paradox occurs, and the system optimum. Next, we present Monte Carlo sim-
ulations of a stochastic interacting particle system through a continuous-time Markovian
process. In contrast to microscopic models which are computationally intensive, we use
a mesoscopic approach using queueing process, which allows us to consider individual
dynamics with computational requirements close to those of macroscopic models. We
first simulate two different static route choice models, which systematically yield average
estimates that align with the deterministic theoretical results. Additionally, we numeri-
cally investigate two dynamic assignment models, where drivers choose their routes in
real time according to the current state of the network, similar to a navigator, and a minor-
ity game where the drivers choose the route based on their past travel times. Interestingly,
the dynamic assignment results show some deviations from the generic results obtained
with static assignment.

The article is organised as follows. The notation and modelling assumptions are given
in the next subsection. The mathematical properties of the deterministic symmetric sys-
tems with user and system optimums in stationary states are given in Sec. 2, while the
Monte Carlo simulation results of the stochastic interacting particle system with various
static and dynamic assignment models are presented in Sec. 3. Some discussion and con-
cluding remarks are reported in Sec. 4.
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1.3 Notations and modelling assumptions

We consider a closed-loop system with periodic boundaries containing N > 1 vehicles,
where a vehicle reaching the destination is returned to the origin. The total number of
vehicles N remains constant. We denote ny € [0,N] the number of vehicles using the
route OAD, np € [0,N] the number of vehicles using the route OBD, and m € [0,N] the
number of vehicles using the route OABD, so that ng +ng+m = N. For simplicity, we
consider in the following the symmetric case, where ny = np =: n and

2n+m=N. (1)

In addition to the total number of vehicles N, the closed system has only one variable: the
number of vehicles taking the shortcut m € [0, N].

The route OAD (respectively OBD) is composed of the roads c4 and /4 (respectively
cp and hp), hy and hp being highways with constant travel time 7;, > 0, and ¢4 and ¢
city roads, where the travel time is proportional to the number of users with a headway
coefficient @ > 0. The route OABD including the shortcut between the cities is composed
of the roads c4 and cp (see Fig. 2). We denote ny,, ny,, nc,, and n¢, € [0, N] the number
of vehicles on each of the roads and suppose here again the symmetry n;,, = ny, =: nj(m)
and n., = n¢, =: n.(m). The vehicles conservation in the closed system gives

2(nc(m)+np(m)) =N, m € [0,N]. (2)

Fig. 3 provides a summary of the notation used, the assumptions made for simplification
about the symmetry, and the vehicle conservation.

Symmetry assumption
n/]/; npA=np=—n
Ney =Nepg = N

nhA = nhB = nh

np
Ne, m Nep
s -
nA
Vehicle conservation
ng+np+m=N
I’lhA

Ny +Neg +0py, +0py, =N

Figure 3 Summary of the notation for the vehicle numbers on the different routes of the system, symmetry
assumptions and vehicle conservation.

Definition 1.1 (Travel time on the routes with highway). The travel time 7..(m) for the
routes OAD and OBD including the city road and the highway is given by

T..(m) = wn.(m)+ Ty, m € [0,N]. (3)
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Definition 1.2 (Travel time on the route with the shortcut). The travel time 7 (m) for the
route OABD using the shortcut consisting of the two city roads is

T_(m) =2wn.(m), m € [0,N]. 4)

Proposition 1.1 (Mean travel time). The mean travel time of the vehicles T (m) from
origin O to destination D according to the number of vehicles m using the shortcut is
given by

N+m N—m

T (m) = on.(m) N + T, N m € [0,N]. (5)

Proof. In fact, we have for all m € [0, N]

Tm) = 3 (N —m) T m) £ mT_(m)
_ ]lv((N—m)(Th—l—a)nc(m)) +2man,(m)) (©6)
- a)nc(m)N;m +ThN;]m.
O

Remark 1. The vehicles mean travel time is equal to
T(0) = T;, + wn.(0) (7)
if no vehicles use the shortcut OABD, while it is equal to
T(N)=20n.(N) &)
if all the vehicles use the shortcut.

To simplify the notations, we also use the travel time relative to travel time on the
highway 7,

7= 120 ©)
the proportion of vehicles using the shortcut
= efo.1] (10)
and the control parameter
0= (11)

The parameter o primarily quantifies the density level in the system, assuming that the
time headway @ and travel time on the highway 7}, are constant. The higher the value of
a, the higher the density.
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2 Behaviour in stationary states

In the following, we consider a stationary distribution of the vehicles resulting from a flow
balance equation in a deterministic framework. In fact, the number of vehicles on each of
the roads in stationary states is such that the incoming flow is equal to the outgoing flow
(see Fig. 4). For that end, we introduce k € [0, 7., the number of vehicles on each city
road that do not use the shortcut, where n. is the total number of vehicles on each city
road in stationary states.

© o ®
Urban road Highway

Figure 4 Scheme for the stationary state. The vehicle speeds and travel times can differ between the two
roads. However, the densities are such that the traffic volumes are the same.

Proposition 2.1 (Mean travel time in stationary states). We have in stationary state with
flow balancing for some k € [0,n,]

(km) =o(k+3)+T,,  me 0N, (12)
T (k,m) = 0(2k+m),  me[0,N], (13)

and N N
T(k,m):(x)<k—|—§>%+h ;}”” m e [0,N]. (14)

or again, with the proportion of vehicle using the shortcut and relative travel times

k
Tk =1+a(5+5), el (15)
2k
9—(k,u>=a(ﬁ+u>, nelo,1], (16)
and .
Tk =a(p+5) 0+ +1-p  pepl] (17)

Proof. We have by definition thanks to the symmetry of the two routes with no shortcut
that m =2(n, — k), i.e.,

nc(k,m)=k+§, m € [0,N]. (18)
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Then, using (3), (4), and (5), the travel times are
T..(k,m) = on.(k,m)+Tj,

::w<k+§>+lh m € [0,N],

T_(k,m) =2wn.(k,m)
= 0(2k+m), m € [0,N],

and

N N—
T (k,m) = wn.(m) ]—I\;m + T Nm

m\N-+m N—m
— ok —) T , 0,N|,
<+2 N TN m € [0,N]

(19)
(20)

21)
(22)

(23)

(24)

Finally the relative travel times (15), (16) and (17) are recovered by using .7 = T /T,

uw=m/N and &« = Nw/Tj,.

Remark 2. We have by definition that

Km) = ne(m) =5 <n(m),  me[0,N].
Remark 3. We also have that
ny(k,m) = N%m —k

on the highways and, the vehicle conservation holds in the symmetric system as

2(np(k,m) +ne(k,m)) =2 <k+%+N%m —k) =N

holds for any k and m € [0, N].

Remark 4. The travel times (A1) and (A2) in uniform states are recovered for

_(N-m)

n
k=—
2 4

m € [0,N],

see in appendix.

Proof. In fact, we have for k = (N —m) /4 in (12)

T <N—m > w(N—m+m)+T
A — m) = _
4 4 2)
N
:w#_*_]"h

=T"(m), m € [0,N],

]

(25)

(26)

(27)

(28)

(29)



Exploring the Braess Paradox: Static Versus Dynamic Assignment 9

while using (13) we obtain

() o5 )
N+m (30)

2
= T"m),  me[0,N].

The same holds for the relative travel times using .7 =T /Tj,, 4 =m/N and oo = N@/T},.
]

We need two more equations to fix k and m. The first is the balance equation where the
system is stationary, i.e., the inflows and outflows over the roads are equal.

Proposition 2.2 (Flow balancing). The flow balancing equation for the stationary system
is given by
1 /N—m k
— ——k)z—, € |0,N]|. 31
Th< 2 ormpy MmN G
Proof. The flow on the urban road of the vehicles that do not use the shortcut is k/ (@n.(k,m))

while the flow on the highway is nj(k,m)/T},. The flow are equal and the system is sta-
tionary if

1 k
—np(k,m) = ——— 0,N]. 32
Using (18) and (26), this is
1 /N—m k
—— k)= N].
Th< 7 X oGrmz) MEON (33)
O

The last equation closing the system is given by the user and system optimum, in addi-
tion to the reference system with no shortcut where m = 0.

2.1 Reference system without shortcut

Proposition 2.3 (Mean travel time in stationary states without shortcut). The reference
travel time without shortcut in stationary states is given by

T, 0<N<2T)/o,
Tre:{ ! h/ (34)

oN/2, N >2T,/o.

or again, using the relative travel time

5 1, 0< <2, )
e a/2,  a>2.
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Proof. With no shortcut (i.e., m = 0), the balance equation (31) gives

0 0<N<2T},/o,
ref = (36)
N/2-T,/o N >2T,/o.
Using (14), the corresponding travel time is then given by
1y, 0<N<2T}/o,
Tref - T(krefao) - (37)
N /2, N > 2T,/ o.

The relative reference travel time (35) is then recovered using .7 =T /T, and @ = N@/T},.
L]

2.2 User optimum

Proposition 2.4 (User optimum in stationary states). The user optimum in stationary
states is given by

N, N, 0<N<2T}/o,
my, =< 4T,/w—N, T.=< 2T, 2T,/o <N < 4T,/ 0, (38)
0, (ON/Z, N24Th/a),

or again, with the proportion of vehicle using the shortcut and relative travel time,

1, Q, 0< <2,
W= 4/oa—1, Ti=1< 2, 2< o <4, (39)
0, o/2, o> 4.

Proof. In the user equilibrium, the travel times over the routes OAD and OBD and the
route OABD with the shortcut are equal, i.e.,

T (ky, ity ) = T (ks 11s). (40)
Using (12) and (13), we obtain
Tt o(k+ D7) = 02k +n) (41)
and - T, w0
o 2

iy = — —N. (43)
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Finally, bounding k, in [0, (N — m,) /2] and s, in [0, N], we obtain

{ 0, 0 <N < 2T,/ o,
« = (44)
N/2—T,/ o, N > 2T,/ o,
N, 0<N < 2T,/ o,
m, =< 4T,/w—N, 2T,/o <N < 4T,/ 0, (45)
0, N > 4T,/ o,
and, using (14),
N, 0<N<2T}/o,
T, =T (ky,my) =4 2Ty, 2T,/ < N < 4T,/ o, (46)
WN /2, N > 4T,/ o.

Finally the proportion of vehicles using the shortcut and relative travel times (39) are
recovered by using .7 =T /Tj,, u =m/N and ¢ = Nw/Tj,. O

Remark 5. The travel time difference to the reference system with no shortcut reads

oN —-T, <0, ()§N<Th/a),
oN —-T, >0, T,/o <N <2T,/ o,
AT =T, — Ty = / / (47)
2Th—(x)N/220, ZTh/(DSN<4Th/(D,
0, NZ4Th/(O.

The Braess paradox arises in stationary states for T,/ @ < N < 4T}, /o, i.e., 1 < o < 4.

Remark 6. The stationary states are uniform for the user optimum as N < 4T,/ @ (com-
pare (38) and (A18) in appendix). In fact, the user optimum implies that travel times on
the urban road and highway are equal. The balance equation (31) makes then equal the
densities as well. There is no similar relationship for the reference system without short-
cut, for the system equilibrium or for N > 4T,/ @, i.e., o0 > 4, as no travel time equality is
required anymore.

2.3 System optimum

After simplifications, the balance equation (31) reduces to the quadratic equation
1, N N—

k2+k<5h—5+m)—m7m:0, me [0,N], (48)
whose biggest root is

N T,

k(m):%<5—m——+\/A(m)), m € [0,N], (49)

0
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with )
——m—5> Ym(N—m), mel0,N]. (50)

N N 51)

Finally, the number of vehicles using the shortcut in the system optimum that minimises
the mean travel time is the solution of

Mmepy = argmin T (k(m),m). (52)
me[0,N]
Such an optimum is solved numerically. The corresponding travel time is given with (14)
by
Topt = T(k(mopt)amopt) (53)

The mean travel time and number of vehicles taking the shortcut for the reference
system and the user and system optimums in stationary states are shown in Fig. 5. The
latest is obtained numerically using R software package and the function optimize
[57]. For N =T/, i.e., for o« = 1, the system optimum abruptly switches from the
user optimum to the reference without shortcut. The corresponding proportion of users
choosing the shortcut switches from 1 to 0 with a transition phase in the vicinity of the
critical setting o = 1 (see Fig. 5, bottom panel). The Braess paradox (orange areas) occurs
for the density range 7;,/ @ < N < 4T}/ @, i.e., | < a < 4. The range more spread out than
in uniform states. The paradox is also maximal for N = 27,/ w, i.e., o = 2, where the lost
time is again more important. In addition, the use of the shortcut and its improvement in
terms of performance for the system optimum is limited (compare the blue dashed curve
and the red one in Fig. 5).

3 Stochastic simulation models

We consider a stochastic interacting particle system by a Markovian queuing model in
continuous time, where the vehicle travel times over each of the roads are independent
exponential random clocks. Unlike microscopic traffic approaches including a motion
model for each vehicle [51-54], we aggregate the performance on each road using queues.
This considerably reduces computational complexity [58]. However, the vehicles remain
individually considered. In this sense, the approach is mesoscopic. The stochastic ap-
proach with exponential clocks can be simulated event-driven in continuous time, with-
out the need of a numerical discretisation scheme. A comparable event-based simulation
process is used in [59] in a deterministic framework.

The network is composed of four sites, the two highways and the two urban roads.
Each site contains a certain number of vehicles. The jump rate of a vehicle from a site
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Stationary state

2T,
|

Braess paradox | ....... ; > A

Mean travel time T

My
Mopt
Myef

Number of vehicles
taking the shortcut m

M
Hopt
Href

Proportion of vehicles
taking the shortcut u

Figure 5 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) in stationary states according to @ = N@/T}, for the user optimum (38) and (39) —
grey curve, the system optimum (52) and (53) — blue dashed curve optimums, and the reference
system without the shortcut (34) — red curve. The orange areas indicate the density range for
which the Braess paradox occurs.

to the next one depends on the number of vehicles on the departure site. In average, the
travel times are equal to 7;, on the highways and proportional to the vehicle number and
equal to wn., ® > 0, on the urban roads. Denoting as previously n; and n. the vehicle
numbers on highway and in the city, the vehicle jump rate for the highway is

np

rn(np) = 7, (54)

while it is

rc(nc):{ l/ow, ifn.>0 (55)

0, otherwise
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for the urban road. We measure the system behaviour in stationary states when the sys-
tem performance is steady. We then calculate the average travel time and the number of
vehicles taking the shortcut. Initially, all the vehicles are located at the origin. However,
further simulation results show that the system is ergodic in the sense that it has a unique
stationary distribution, regardless of the initial conditions.

We analyse and compare five routing strategies: A deterministic multi-class model for
which each vehicle has fixed routing choice; A static random model for which the prob-
ability to choice each of the roads is fixed; Two dynamic assignment models for which
the route is determined by minimising the travel time in real time, as a navigator may do;
A minority game approach, where the route is determined according to previous travel
times. The first two strategies rely on static assignment models, while the last three are
based on dynamic assignment. The simulation model with static assignment is an attrac-
tive zero-range process with a product-form invariant distribution that can be determined
recursively for a finite system [60,61]. Alternatively, the assignment models can be ad-
dressed using Markovian queuing theory, as in [47-49]. In the following figures, we
present Monte Carlo simulation results averaged on 10 jumps of the periodic system
where the demand remains constant. The number of vehicles N ranges from 10 to 440 ve-
hicles in steps of 10. We also use 7j, = 1 while @ = 0.01. The averaged travel times of the
static assignment stochastic simulation models in Sec. 3.1 match directly the deterministic
estimate of user equilibrium in stationary states. However, the dynamic assignment mod-
els in Sec. 3.2 show more complex behaviour that may reduce or exacerbate the Braess
paradox.

3.1 Static assignment

In this section, we simulate two user optimum static assignment models. In the first one
— the multi-class routing model — a constant route assignment is given to each of the
vehicles. In the second one — the probabilistic routing model — the route is randomly
determined at the origin according to a constant probability. Both simulation models
match in average the performance of the deterministic system in stationary states.

3.1.1 Multi-class routing model

We consider in the multi-class model that each vehicle has a fixed routing strategy. This
strategy is given by the deterministic user equilibrium m, in (38). We show in Fig. 6
the mean simulation results of this multi-class routing model. As expected, the mean
simulation results match the dynamic of the deterministic system in stationary states.

3.1.2 Probabilistic routing model

In the probabilistic routing model, the vehicles at the origin of the network randomly
choose their route according to a fixed probability given by the user optimum (38) in
stationary states. In this approach, the route choice probability has to be weighted by the
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Multi-class routing model

= Braess paradox | ... : / -
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Figure 6 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) according to « for the user optimum in stationary states (38) — grey curve, the
reference system without shortcut (34) — red curve, and mean simulation results of the stochastic
interacting particle system with the multi-class routing model — blue dashed curve. The averages
of the simulations are consistent with the deterministic results.

inverse of the travel time to avoid the bias induced by an over-representation of the faster
vehicles. For the root OABD with the shortcut, this probability reads

mT_.(k,m)
N —m)T_(k,m)+mT_.(k,m)

p(k,m) = ( (56)

where k is the solution of the flow balancing equation (31). Then, the probability of
choosing the route OAD or OBD without shortcut is given by

l—p(k,m).

> (57)

pw(kv m) =
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Since the travel times over the different routes are equal for the user optimum, the routing
probability reads directly, see (38),

1, 0<N <27,/ o,
«=plhkeymy) = —=¢ — —1, 2T,/ < N < 4T,/ 0, 58
P« = p( ) N N W/ 0 < h/ (58)
0, N24Th/(1).

As for the multi-class routing model, the mean simulation results of the probabilistic
route choice model are given by the deterministic system in stationary states (38), see
Fig. 7. This is not surprising as both multi-class and probabilistic routing models are
static strategies whose effects vanish on average.

Probabilistic routing model
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Figure 7 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) according to o for the user optimum in stationary states (38) — grey curve, the
reference system without shortcut (34) — red curve, and mean simulation results of the stochastic
interacting particle system with the fixed probabilistic routing model — blue dashed curve. The
averages of the simulations are consistent with the deterministic model.
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3.2 Dynamic assighnment

In this section, we simulate three dynamic assignment models with individual route choice
in real time. In the first one — the dynamic routing model — the route is determined at the
origin based on the current mean travel time over the three routes. In the second — the
full dynamic routing model — an update is made at the node A with the current mean
travel times on the roads BD and AD. The last dynamic assignment model is a minority
game where the driver chooses the route at the origin based on the last travel times. The
simulation results for dynamic assignment differ from those for static assignment.

3.2.1 Dynamic routing model

We consider a state-dependent dynamic assignment model in which the driver at the origin
O of the network selects the route that minimises the travel time in real time. Let n4(¢)
be the instantaneous number of vehicles on the urban road OA (respectively, np(t) for the
urban road BD), the dynamic routing strategy is

routeq(t) = argmin { wna (1) + T, wng(t)+ Ty, @(na(t)+np(t))}. (59)

for the vehicles located at the origin O'. Note that under certain conditions, the underly-
ing Markov process of the system with state-dependent assignment is recurrent positive,
i.e., ergodic and with a single and stable invariant distribution that can be determined
analytically [48,49]. In the following figure, we estimate the stationary expected value
by means of Monte Carlo simulation. Interestingly, the mean simulation results of the
dynamic routing strategy are not consistent with the deterministic results of the user op-
timum in stationary states (38), nor with the mean simulation results of the static routing
models in Sec. 3.1 (compare Fig. 5, 6, 7 with Fig. 8). Dynamic assignment attenuates the
Braess paradox at intermediate densities before overcoming it at high densities. In par-
ticular, the dynamic assignment affects the route, including the shortcut, in situations of
extreme congestion involving a large number of vehicles, i.e. N > 47}, / @, or equivalently,
when 4 < a. Neither the deterministic user nor the system optimums does this.

3.2.2 Full dynamic routing model

In this section, we consider a state-dependent dynamic assignment model in which drivers
choose the route that minimises travel time in real time not only at the origin O of the
network, but also at the node A, as a navigator might do. In fact, at the node A, a driver
can choose the motorway AD or the city road BD by using the shortcut AD (see Fig. 2).
With n4 () the current number of vehicles on the urban road OA (respectively, np(t) for
the urban road BD), the dynamic routing strategy is

routeq(t) = argmin { @na(t) + Tj,, @ng(t) + Ty, 0 (na(t) +np(r))}. (60)

! An open-source online simulation platform of this model is available at
https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_
Braess—-Paradox.html?speed=0.9.
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https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_Braess-Paradox.html?speed=0.9
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Dynamic routing model
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Figure 8 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) for the user optimum in stationary states (38) — grey curve, the reference system
without shortcut (34) — red curve, and mean simulation results of the stochastic interacting par-
ticle system with the dynamic routing strategy (59) — blue dashed curve.

for the vehicles at origin O, and
route4 () = argmin {7}, wnp(t)}. (61)

for the vehicles at node A. With this strategy, it turns out that the mean values almost
match the estimates of the static user optimum in stationary states (see Fig. 9, top panel),
although the shortcut is systematically underused (see Fig. 9, bottom panels). In fact,
updating the route along the way significantly affects the results (compare Fig. 8 and 9).

3.2.3 Minority game

In contrast to previous dynamic traffic assignment models, in which routes are determined
based on current traffic states, this model chooses routes based on past travel times, as in
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Full dynamic routing model
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Figure 9 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) according to « for the user optimum in stationary states (38) — grey curve, the
reference system without shortcut (34) — red curve, and mean simulation results of the stochastic
interacting particle system with the full dynamic routing strategy (60) and (61) — blue dashed
curve.

a minority game [62,63]. Fig. 10 shows the simulation results for a stationary minority
game, in which drivers choose routes that minimise the mean travel time over the last ten
journeys on each route. Here, one hundred simulations over 5e4 jumps are repeated for a
number of vehicles ranging from 10 to 440 in steps of 10. The simulation results show a
much more pronounced discrepancy with the performance of the deterministic, static user
optimum in stationary states given in (38), especially at high densities. In addition, the
results exhibit a large variability. Further results with a memory of only two and five past
travel times show similar results (compare Fig. 10 where the route is determined based
on the ten past travel times and Fig. 11 where the route is determined based on the only
two past travel times). Memory seems to be irrelevant in the minority game [64]. Note
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that other simulation experiments in which drivers statically choose a route based on their
initial travel times show polarised behaviour, with almost all vehicles choosing the same
route in stationary states.

Minority game based on ten past travel times

Braess paradox

Mean travel time T

Number of vehicles
taking the shortcut m

Proportion of vehicles
taking the shortcut u

o

Figure 10 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) according to o for the user optimum in stationary states (38) — grey curve,
the reference system without shortcut (34) — red curve, and mean simulation results of the
stochastic interacting particle system with the minority game where the drivers choose the
route based on their ten past travel times — blue dashed curve.

4 Conclusion

In this article, we present explicit results for the Braess paradox in a closed system. The
parameters are the (constant) number of vehicles in the system N > 1, the travel time
on the highway 7 > 0 and the headway coefficient @ > 0 for congested urban roads.
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Minority game based on two past travel times
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Figure 11 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) according to « for the user optimum in stationary states (38) — grey curve,
the reference system without shortcut (34) — red curve, and mean simulation results of the
stochastic interacting particle system with the minority game where the drivers choose the
route based on their two past travel times — blue dashed curve.

We consider first the deterministic system in stationary states with flow balancing in the
user and system optimum. Monte Carlo simulations of a stochastic interacting particle
system with static routing strategy match the deterministic stationary performance. The
Braess paradox occurs for the density range 7;,/@ < N < 4T, /@, i.e., 1 < o <4 and its
effect is maximal for N = 27}/ o, i.e. @ = 2. However, dynamic assignments, where
the driver chooses the route that minimises the travel time in real time according to the
current state of the network or minority game where the drivers choose the route based on
their past travel times, show a deviation from the theoretical results. The Braess paradox
first diminishes at intermediate densities before being exacerbated at high densities. The
results highlight that individual dynamic assignment strategies can lead to unexpected be-
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haviours. They point out the necessity to develop collective strategies and further control
techniques to limit and control the occurrence of the Braess paradox in traffic networks.

Acknowledgements The authors gratefully thank Cyril Furtlehner and Jean-Marc Lasgouttes for
fruitful discussions during the preparation of this work. AT acknowledges the Franco-German
research project MADRAS, funded in France by the Agence Nationale de la Recherche (ANR,
French National Research Agency), grant number ANR-20-CE92-0033, and in Germany by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant number 446168800.

Author Contributions SL: Conceptualization, Methodology, Investigation, Writing — review &
editing. AS: Conceptualization, Methodology, Investigation, Writing — review & editing. AT:
Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing —
original draft, Writing — review & editing.

Reproducibility of the results An open source simulation platform of the Braess paradox with
the stochastic interacting particle system with the dynamic routing model given in (59) is available
online at

https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_
Braess—Paradox.html?speed=0.9

Conflict of interest The authors declare that they have no conflict of interest.

References

[1] Pigou, A.: The economics of Welfare. Routledge (2002). URL
https://www.taylorfrancis.com/books/mono/10.4324/
9781351304368 /economics-welfare—-arthur—-pigou

[2] Braess, D.: Uber ein Paradoxon aus der Verkehrsplanung. Un-
ternehmensforschung (Mathematical Methods of Operations Research) 12,
258 (1968). doi:10.1007/BF01918335. See [?] for an English translation of
[2].

[3] Wardrop, J.: Road paper. Some theoretical aspects of road traffic research.
Proceedings of the Institution of Civil Engineers 1(3), 325-362 (1952).
doi1:10.1680/ipeds.1952.11259

[4] Roughgarden, T.: On the severity of Braess’s paradox: Designing networks for
selfish users is hard. Journal of Computer and System Sciences 72, 922 (2000).
doi:10.1016/3.Jcss.2005.05.009

[5] Acemoglu, D., Makhdoumi, A., Malekian, A.: Informational Braess’ paradox: The
effect of information on traffic congestion. Operational Research 66, 893 (2018).
doi:10.1287/opre.2017.1712


https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_Braess-Paradox.html?speed=0.9
https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_Braess-Paradox.html?speed=0.9
https://www.taylorfrancis.com/books/mono/10.4324/9781351304368/economics-welfare-arthur-pigou
https://www.taylorfrancis.com/books/mono/10.4324/9781351304368/economics-welfare-arthur-pigou
http://dx.doi.org/10.1007/BF01918335
http://dx.doi.org/10.1680/ipeds.1952.11259
http://dx.doi.org/10.1016/j.jcss.2005.05.009
http://dx.doi.org/10.1287/opre.2017.1712

Exploring the Braess Paradox: Static Versus Dynamic Assignment 23

[6] Bittihn, S., Schadschneider, A.: Braess’ paradox in the age of traffic information.
Journal of Statistical Mechanics: Theory and Experiment 2021(3), 033401 (2021).
doi:10.1088/1742-5468/abdeae

[7] Poppe, C.: Der optimierte Verkehrsstau oder das Paradox von Braess. Spek-
trum.de Scilogs (2021). URL https://scilogs.spektrum.de/hlf/der—
optimierte-verkehrsstau-oder-das—-paradox—-von-braess/

[8] Wang, A., Tang, Y., Mohmand, Y., Xu, P.: Modifying link capacity to avoid Braess
paradox considering elastic demand. Physica A: Statistical Mechanics and its Ap-
plications 605, 127951 (2022). doi1:10.1016/7.physa.2022.127951

[9] Dafermos, S., Nagurney, A.: On some traffic equilibrium theory para-
doxes. Transportation Research Part B: Methodological 18, 101 (1984).
doi:10.1016/0191-2615(84)90023-7

[10] Steinberg, R., Zangwill, W.: The prevalence of Braess’ paradox. Transportation
Science 17, 301 (1983). doi:10.1287/trsc.17.3.301

[11] Valiant, G., Roughgarden, T.: Braess’s paradox in large random graphs. In: Pro-
ceedings of the 7th ACM Conference on Electronic Commerce, pp. 296-305 (2006).
doi:10.1145/1134707.1134740

[12] Baker, L.: Removing roads and traffic lights speeds urban travel. Scientific Amer-
ican pp. 20-21 (2009). URL https://www.scientificamerican.com/
article/removing-roads—and-traffic-1lights/

[13] Easley, D., Kleinberg, J.: Networks, crowds, and markets: Reasoning about a highly
connected world, vol. 1. Cambridge University Press (2010). URL https://
www.cs.cornell.edu/home/kleinber/networks—book/

[14] Knodel, W.: Graphentheoretische Methoden und ihre Anwendungen, vol. 13.
Springer-Verlag (1969). doi:10.1007/978-3-642-95121-3

[15] Kolata, G.: What if they closed 42nd street and nobody noticed. New York Times
25,38 (1990). URL https://www.nytimes.com/1990/12/25/health/
what—-if-they-closed-42d-street—-and-nobody-noticed.html

[16] Cohen, J.: The counterintuitive in conflict and cooperation. Am. Scientist 76, 577
(1988). URL https://trid.trb.org/View/289989

[17] Xia, Y., Hill, D.: Dynamic Braess’s paradox in complex communication networks.
IEEE Transactions on Circuits and Systems II: Express Briefs 60(3), 172-176
(2013). doi:10.1109/TCSII.2013.2240912

[18] Huant, S., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Martins, F., Bayot,
V., Wallart, X., Desplanque, L., Pala, M.G.: Planning the electron traffic in


http://dx.doi.org/10.1088/1742-5468/abdeae
https://scilogs.spektrum.de/hlf/der-optimierte-verkehrsstau-oder-das-paradox-von-braess/
https://scilogs.spektrum.de/hlf/der-optimierte-verkehrsstau-oder-das-paradox-von-braess/
http://dx.doi.org/10.1016/j.physa.2022.127951
http://dx.doi.org/10.1016/0191-2615(84)90023-7
http://dx.doi.org/10.1287/trsc.17.3.301
http://dx.doi.org/10.1145/1134707.1134740
https://www.scientificamerican.com/article/removing-roads-and-traffic-lights/
https://www.scientificamerican.com/article/removing-roads-and-traffic-lights/
https://www.cs.cornell.edu/home/kleinber/networks-book/
https://www.cs.cornell.edu/home/kleinber/networks-book/
http://dx.doi.org/10.1007/978-3-642-95121-3
https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
https://trid.trb.org/View/289989
http://dx.doi.org/10.1109/TCSII.2013.2240912

24

S. Lassarre, A. Schadschneider & A. Tordeux

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

semiconductor networks: A mesoscopic analog of the Braess paradox encoun-
tered in road networks. AIP Conference Proceedings 1566(1), 229-230 (2013).
doi:10.1063/1.4848369

Manik, D., Witthaut, D., Timme, M.: Predicting Braess’ paradox in supply and
transport networks. arXiv:2205.14685 (2022). URL https://arxiv.org/
abs/2205.14685

Nagurney, L., Nagurney, A.: Physical proof of the occurrence of the
Braess paradox in electrical circuits. Europhysics Letters 115, 28004 (2016).
doi:10.1209/0295-5075/115/28004

Coletta, T., Jacquod, P..: Linear stability and the Braess paradox in
nonlinear electric transport. Physical Review E 93, 032222 (2016).
doi:10.1103/PhysRevE.93.032222

Tchuisseu, E., Gomila, D., Colet, P., Witthaut, D., Timme, M., Schifer, B.: Curing
Braess’ paradox by secondary control in power grids. New Journal of Physics 20(8),
083005 (2018). do1:10.1088/1367-2630/aad490

Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchro-
nization and power outage. New Journal of Physics 14(8), 083036 (2012).
doi1:10.1088/1367-2630/14/8/083036

Pala, M., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Martins, F., Bayot, V., Wal-
lart, X., Desplanque, L., Huant, S.: Transport inefficiency in branched-out meso-
scopic networks: An analog of the Braess paradox. Physical Review Letters 108(7),
076802 (2012). do1:10.1103/PhysRevLett.108.076802

Donovan, G.: Biological version of Braess’ paradox arising from
perturbed homeostasis. Physical Review E 98, 062406 (2018).
doi1:10.1103/PhysRevE.98.062406

Fouladzadeh, A., Dorraki, M., Min, K., Cockshell, M., Thompson, E.,
Verjans, J., Allison, A., Bonder, C., Abbott, D.: The development of
tumour vascular networks. Communications Biology 4(1), 1111 (2021).
doi1:10.1038/s42003-021-02632-x

Dong, A., Sohn, L., Lustig, M.: Metal-pad-enhanced resistive pulse sensor reveals
complex-valued Braess paradox. Physical Review. E 108(1-1), 014408 (2023).
doi:10.1103/PhysRevE.108.014408

Banerjee, K., Bhattacharyya, K.: Open chemical reaction networks, steady-state
loads and Braess-like paradox. arXiv:1410.4299 (2014). URL http://arxiv.
org/abs/1410.4299


http://dx.doi.org/10.1063/1.4848369
https://arxiv.org/abs/2205.14685
https://arxiv.org/abs/2205.14685
http://dx.doi.org/10.1209/0295-5075/115/28004
http://dx.doi.org/10.1103/PhysRevE.93.032222
http://dx.doi.org/10.1088/1367-2630/aad490
http://dx.doi.org/10.1088/1367-2630/14/8/083036
http://dx.doi.org/10.1103/PhysRevLett.108.076802
http://dx.doi.org/10.1103/PhysRevE.98.062406
http://dx.doi.org/10.1038/s42003-021-02632-x
http://dx.doi.org/10.1103/PhysRevE.108.014408
http://arxiv.org/abs/1410.4299
http://arxiv.org/abs/1410.4299

Exploring the Braess Paradox: Static Versus Dynamic Assignment 25

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Mizrak, O., Ozalp, N.: Fractional analog of a chemical system inspired by
Braess’ paradox. Computational and Applied Mathematics 37, 2503-2518 (2018).
doi:10.1007/s40314-017-0462-9

Cohen, J., Horowitz, P.: Paradoxical behaviour of mechanical and electrical net-
works. Nature 352, 699 (1991). doi:10.1038/352699a0

Penchina, C., Penchina, L.: The Braess paradox in mechanical, traffic,
and other networks. American Journal of Physics 71(5), 479 (2003).
doi1:10.1119/1.1538553

Zhitlukhina, E., Belogolovskii, M., De Leo, N., Fretto, M., Sosso, A., Seidel,
P.: Quantum coherent transport in a three-arm beam splitter and a Braess para-
dox. International Journal of Quantum Information 15(08), 1740011 (2017).
doi:10.1142/50219749917400111

Drinko, A., Andrade, FM., Bazeia, D.: Narrow peaks of full transmis-
sion in simple quantum graphs. Physical Review A 100, 062117 (2019).
doi:10.1103/PhysRevA.100.062117

Banerjee, A., Bej, P.: Braess paradox in a quantum network. Physical Review A
104, 052622 (2021). doi1:10.1103/PhysRevA.104.052622

Braess, D.: A Paradox on Traffic Networks. https://homepage.ruhr-uni-
bochum.de/dietrich.braess/#paradox (2019). [Online; accessed 25-
Mai-2024]

Yao, J., Cheng, Z., Chen, A.: Bibliometric analysis and systematic literature review
of the traffic paradoxes (1968-2022). Transportation Research Part B: Methodolog-
ical 177, 102832 (2023). doi:10.1016/7.trb.2023.102832

Irvine, A.: How Braess’ paradoxon solves Newcomb’s problem. In-
ternational Studies in the Philosophy of Science 7, 141 (1993).
doi1:10.1080/02698599308573460

Rapoport, A., Kugler, T., Dugar, S., Gisches, E.: Choice of routes in congested
traffic networks: Experimental tests of the Braess paradox. Games and Economic
Behavior 65, 538 (2009). doi:10.1016/7.geb.2008.02.007

Zhang, H.F,, Yang, Z., Wu, Z.X., Wang, B.H., Zhou, T.: Braess’s paradox in epi-
demic game: better condition results in less payoff. Scientific Reports 3, 3292
(2013). doi:10.1038/srep03292

Skinner, B.: The price of anarchy in basketball. Journal of Quantitative Analysis in
Sports 6, 3 (2009). doi:10.2202/1559-0410.1217


http://dx.doi.org/10.1007/s40314-017-0462-9
http://dx.doi.org/10.1038/352699a0
http://dx.doi.org/10.1119/1.1538553
http://dx.doi.org/10.1142/S0219749917400111
http://dx.doi.org/10.1103/PhysRevA.100.062117
http://dx.doi.org/10.1103/PhysRevA.104.052622
https://homepage.ruhr-uni-bochum.de/dietrich.braess/#paradox
https://homepage.ruhr-uni-bochum.de/dietrich.braess/#paradox
http://dx.doi.org/10.1016/j.trb.2023.102832
http://dx.doi.org/10.1080/02698599308573460
http://dx.doi.org/10.1016/j.geb.2008.02.007
http://dx.doi.org/10.1038/srep03292
http://dx.doi.org/10.2202/1559-0410.1217

26

S. Lassarre, A. Schadschneider & A. Tordeux

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Nagurney, A., Parkes, D., Daniele, P.: The internet, evolutionary variational inequal-
ities, and the time-dependent Braess paradox. Computational Management Science
4,355 (2007). do1:10.1007/s10287-006-0027~7

Turner, K., Wolpert, D.: Collective intelligence and Braess’ paradox. In: Pro-
ceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence, p. 104
(2000). URL https://www.aaail.org/Papers/AAAI/2000/AAAIO0-
016.pdf

Zhu, W., Zhang, J., Ye, S., Xiang, W.: Braess paradox under the bi-objective
user equilibrium.  Expert Systems with Applications 213, 118871 (2023).
doi:10.1016/7j.eswa.2022.118871

Colombo, R., Holden, H.: On the Braess paradox with nonlinear dynamics and
control theory. Journal of Optimization Theory and Applications 168, 216 (2016).
doi1:10.1007/s10957-015-0729-5

Sousa, A., Chaves, A., Farias, G., Peeters, F.: Braess paradox
at the mesoscopic scale. Physical Review B 88, 245417 (2013).
doi1:10.1103/PhysRevB.88.245417

Pala, M., Sellier, H., Hackens, B., Martins, F., Bayot, V., Huant, S.: A new
transport phenomenon in nanostructures: a mesoscopic analog of the Braess para-
dox encountered in road networks. Nanoscale Research Letters 7, 1-4 (2012).
do1:10.1186/1556-276X-7-472

Cohen, J.E., Kelly, F.P.: A paradox of congestion in a queuing network. Journal of
Applied Probability 27(3), 730-734 (1990). doi:10.2307/3214558

Kelly, E.P.: Network routing. Philosophical Transactions of the Royal Society of
London. Series A: Physical and Engineering Sciences 337(1647), 343-367 (1991).
doi:10.1098/rsta.1991.0129

Calvert, B., Solomon, W., Ziedins, I.: Braess’s paradox in a queueing network with
state-dependent routing. Journal of Applied Probability 34(1), 134-154 (1997).
doi:10.2307/3215182

Lin, W.H., Lo, H.: Investigating Braess’ paradox with time-dependent queues.
Transportation Science 43, 117 (2009). doi:10.1287/trsc.1090.0258

Bazzan, A., Kliigl, F: Case studies on the Braess paradox: Simulat-
ing route recommendation and learning in abstract and microscopic mod-
els. Transportation Research Part C: Emerging Technologies 13, 299 (2005).
doi:10.1016/7.trc.2005.07.003


http://dx.doi.org/10.1007/s10287-006-0027-7
https://www.aaai.org/Papers/AAAI/2000/AAAI00-016.pdf
https://www.aaai.org/Papers/AAAI/2000/AAAI00-016.pdf
http://dx.doi.org/10.1016/j.eswa.2022.118871
http://dx.doi.org/10.1007/s10957-015-0729-5
http://dx.doi.org/10.1103/PhysRevB.88.245417
http://dx.doi.org/10.1186/1556-276X-7-472
http://dx.doi.org/10.2307/3214558
http://dx.doi.org/10.1098/rsta.1991.0129
http://dx.doi.org/10.2307/3215182
http://dx.doi.org/10.1287/trsc.1090.0258
http://dx.doi.org/10.1016/j.trc.2005.07.003

Exploring the Braess Paradox: Static Versus Dynamic Assignment 27

[52] Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally
asymmetric exclusion processes. Physical Review E 94, 062312 (2016).
doi:10.1103/PhysRevE.94.062312

[53] Bittihn, S., Schadschneider, A.: Braess paradox in networks of stochastic micro-
scopic traffic models. Proceedings of the Traffic and Granular Flow 2017 Confer-
ence p. 45 (2019). doi1:10.1007/978-3-030-11440-4 6

[54] Case, D., Liu, Y., Kiss, 1., Angilella, J.R., Motter, A.: Braess’s paradox and
programmable behaviour in microfluidic networks. Nature 574, 647 (2019).
doi:10.1038/s41586-019-1701-6

[55] Schadschneider, A., Bittihn, S.: Braess’ paradox in networks with mi-
croscopic  stochastic dynamics and traffic information. Proceedings
of the Traffic and Granular Flow 2019 Conference p. 563 (2020).
doi:10.1007/978-3-030-55973-1_69

[56] Cheng, Z., Yao, J., Chen, A., An, S.: Analysis of a multiplicative hybrid route choice
model in stochastic assignment paradox. Transportmetrica A: Transport Science
18(3), 1544-1568 (2022). doi:10.1080/23249935.2021.1953189

[57] R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2025). URL https: //www.R—
project.org/

[58] Tordeux, A., Laimmel, G., Hinseler, E.S., Steffen, B.: A mesoscopic model for large-
scale simulation of pedestrian dynamics. Transportation Research Part C: Emerging
Technologies 93, 128—-147 (2018). do1:10.1016/7.trc.2018.05.021

[59] Klamroth, K., Lang, B., Seyfried, A., Stiglmayr, M.: Network simulation for pedes-
trian flows with hydefs. Collective dynamics S, 1-16 (2020)

[60] Andjel, E.D.: Invariant measures for the zero range process. The Annals of Proba-
bility 10(3), 525-547 (1982). doi:10.1214/a0p/1176993765

[61] Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range
process and related models. Journal of Physics A: Mathematical and General 38(19),
R195 (2005). do1:10.1088/0305-4470/38/19/R0O1

[62] Challet, D., Zhang, Y.C.: On the minority game: Analytical and numerical studies.
Physica A: Statistical Mechanics and its Applications 256(3-4), 514-532 (1998).
doi:10.1016/50378-4371(98)00260-X

[63] Moro, E.: The minority game: An introductory guide. Advances in Condensed Mat-
ter and Statistical Physics (2004). URL https://arxiv.org/abs/cond-
mat/0402651


http://dx.doi.org/10.1103/PhysRevE.94.062312
http://dx.doi.org/10.1007/978-3-030-11440-4_6
http://dx.doi.org/10.1038/s41586-019-1701-6
http://dx.doi.org/10.1007/978-3-030-55973-1_69
http://dx.doi.org/10.1080/23249935.2021.1953189
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1016/j.trc.2018.05.021
http://dx.doi.org/10.1214/aop/1176993765
http://dx.doi.org/10.1088/0305-4470/38/19/R01
http://dx.doi.org/10.1016/S0378-4371(98)00260-X
https://arxiv.org/abs/cond-mat/0402651
https://arxiv.org/abs/cond-mat/0402651

28 S. Lassarre, A. Schadschneider & A. Tordeux

[64] Cavagna, A.: Irrelevance of memory in the minority game. Physical Review E 59(4),
R3783 (1999). doi1:10.1103/PhysRevE.59.R3783

[65] Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Trans-
portation Science 39, 446 (2005). doi:10.1287/trsc.1050.0127

[66] Nagurney, A.: The negation of the Braess paradox as demand increases: The wis-
dom of crowds in transportation networks. Europhysics Letters 91, 48002 (2010).
doi:10.1209/0295-5075/91/48002

Appendix: Uniform state

In Sec. 2, we compute the system performance in stationary states with flow balancing.
We consider here a uniform state where the vehicles are equally distributed between urban
roads and highways. For example, if n vehicles are using the urban road and the highway,
we assume that n/2 vehicles are on the highway and 7/2 on the urban road (see Fig. A1).
Similarly if m vehicles are using the shortcut, there will be m/2 of these vehicles on
each of the urban roads. The uniform state is not necessary stationary except for the user
equilibrium of the system including the shortcut up to a certain density threshold.

N\ L\ L\ — L\ L\ L\
¢ o @ o v ¢ Yo ¢ ‘¢
O

@ Urban road Highway @

Figure A1 Scheme for the uniform state where the number of vehicles are equally distributed between the
urban road and highway. As the speeds on the two roads may be different, the flows are not
necessary equal (i.e., the state is not necessary stationary).

Proposition A1 (Mean travel time in uniform states). We have in uniform states where
the vehicles are equally distributed between the roads

N
Tj‘(m):a)#%—Th, m e [0,N], (A1)
N
T”(m):w¥, m € [0,N], (A2)
and ( )2
wry_ (N+m N—m
T(m) = 0= + Ty m e [0,N], (A3)

or again, with the proportion of vehicle using the shortcut and relative travel times

%”(u)=l+%(1+u), ne[0,1], (A4)
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o

TH) =5

(14+u), wmelo,1] (AS5)

and
T =S+ +1-p,  pe,1] (A6)

Proof. It is straightforward to check that in uniform states where the vehicles are equally
distributed between urban roads and highways we have

() = 3 (- m)
(A7)

1
:Z(N+m), m € [0,N],

asn=(N—m)/2,see(l).
Then using (3), (4), and (5), it follows that

T%(m) = onl(m)+T,
N+m (AB)

—0—"+T;,  me[0N],

T"(m) = 20n(m)
N+m (A9)

—0~ ", me N,

and

N+m N—m
T" = T
(m) = @ne(m) ==+ T —

(N +m)? N—m
= T 0,N|.
o AN +1p N m€[7 ]

(A10)

Finally the relative travel times (A4), (A5) and (A6) are recovered by using .7 = T /Tj,
p=m/N and o = Nw/T,. O

Remark A1l. We have on the highways that

ny(m) = -n

1
:Z(N—m), mG[OaNL

(A11)

and the total vehicle number in the system is conserved by construction

2(nt(m) +nj(m)) :2(%(N+m)+%(N—m)> =N (A12)
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Reference system without shortcut

Proposition A2 (Mean travel time in uniform states without shortcut). Without shortcut
(i.e., m = 0), the reference travel time in uniform states is

1
tef = 7 ON + T, (A13)
while the relative reference travel time is
(01
rof = I+ (A14)
with a = No/T),.
Proof. We have directly using (A3)
1
et = 17(0) = 7ON + T, (A15)
or again
T o
T === =1+—, oa=Nw/T,. (A16)
15 4
[

User optimum

Proposition A3 (User optimum in uniform states). The user optimum in uniform states
where the vehicles are equally distributed between the roads is given by

N, N, 0<N<2T,/o,
m'={ 4T,/ —N, T ={ 2T, 2T, /0 <N < 4T, /o, (Al7)
0, ON /4 + Ty, N > 4T,/ o,

or again, with the proportion of vehicle using the shortcut and relative travel time,

1, a, 0<a<?2,
pt=< 4/a—1, Th={ 2, 2< o <4, (A18)
0, 1+ a/4, o> 4.

Proof. In the user equilibrium, we are looking for a number of drivers /% choosing the
route OABD with the shortcut where all travel times are equal, i.e., for which

TH(") = T"("). (A19)

Using (A1) and (A2), this is

N
Ty+ o :m — : (A20)
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which gives

mi =4T,/o—N. (A21)
In addition, the number of drivers m¥ choosing the shortcut is necessary positive and lower
than N, i.e.,

m = min{N, max{0, 7} }. (A22)
This gives
N, 0<N < 2T,/ o,
ml={ 4T,/o—N, 2T,/o <N <4T,/o, (A23)
0 N > 4T,/ o.

Then, using (A3) we obtain the corresponding mean travel time of the user equilibrium in
uniform states

N, 0<N<2T},/o,
T' =T"(m")={ 2T, 2T,/ < N < 4T,/ o, (A24)
ON /44Ty, N > 4T,/ o.

Finally the proportion of vehicles using the shortcut and relative travel times (A18) are
recovered by using .7 =T /Tj,, u =m/N and ¢ = Nw/Tj,. O

Remark A2. The shortcut is used by all the vehicles up to @ <2, i.e. N < 2T,/ o, and
remains in use up to & < 4, i.e. N < 4T,/ @. After this threshold, the travel time on the
route OABD is longer than those on the routes OAD and OBD including the highway,
even for a single vehicle.

Remark A3. The travel time difference to the reference system with no shortcut
AT =T — T,y (A25)

quantifies the occurrence of the Braess paradox. It is positive (resp. negative) when the
Braess paradox holds (resp. does not hold). We have in uniform states for the user opti-
mum

3ON T, <0, 0<N< 3T/ o,
3 4
=oN—T, >0, z1,/0 <N <2T,/ o,
ATH=TH T =¢ 200 M S/ & (A26)
Th—a)N/4207 2Th/a)§N<4Th/a),
0, N > 4Th/60.
Therefore, the Braess paradox arises for the density range
4
gTh/a) <N <47}/ o. (A27)
or again
4
3 <oa<4. (A28)

with oo = N@/Tj,.
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System optimum

Proposition A4 (System optimum in uniform states). The system optimum in uniform
states where the vehicles are equally distributed between the roads is given by

Na wN7 0§N<Th/0),
myy = 2Th/®—N, To =19 2T — o5 T2, T,/o <N < 2T,/ o,
0, N /44Ty, N > 2T,/ o,
(A29)
or again, with the proportion of vehicle using the shortcut and relative travel time,
1, Q, 0<a<l,
“gpt: 2/&—1, %lf)t_ 2—1/(X, 1 S(X<2, (A30)
0, 1+a/4, o>2.

Proof. The system optimum is obtained by minimising the mean travel time (A3). We

have
N-+m B 1,

T") (m) = 0,N]. A31
T m = 0" T e o] (A31)
Then, (T")"(m) = @/(2N) > 0 and the mean travel time is minimal for m( such that
(T")'(mgy) = 0. This gives
2T,
= ?’1 —N. (A32)

Bounding the number of drivers choosing the shortcut in [0, N], i.e

m(u)pt = min{N7 max{oaﬁlgpt}}a (A33)
we obtain
N, 0N Th/(l),
Moy = 4 2Ti/@—N,  T,/o <N <2T,/0, (A34)

Then, using (A3) we obtain the mean travel time of the system optimum in uniform state

N, 0<N<T,/ o,
To =T" (M) 2T — o T2, Th/® <N <2T,/0, (A35)
ON /44Ty, N > 2T,/ 0.

Finally the proportion of vehicles using the shortcut and relative travel times (A30) are
recovered by using .7 =T /Tj,, 4 =m/N and o« = No/Tj,. O

Remark Ad4. For the system optimum, in contrast to the user optimum, the shortcut is
exclusively in use for a < 1, i.e. N < Tj,/ o, partially in use up to o <2, i.e. N < 2T;,/ @,
and no more in use for o > 2, i.e. N > 2T,/ .
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Remark AS. In uniform states, the travel time difference to the reference system with no
shortcut and the system optimum

3oN—T, <0, 0<N<T,/o,
ATO';,I = Talfm - r':zf: Ty — ﬁThz - O)N/4 <0, Th/w =N< 2Th/w’ (A36)
(), N > 2Th/a).

is always negative. Indeed, the Braess paradox only arises for the user optimum.

The mean travel time and number of vehicles taking the shortcut for systems in uniform
states are shown in Fig. A2. The continuous grey curve is the user optimum, the dashed
blue curve is the system optimum, and the red curve is the reference system with no
shortcut. The Braess paradox for the user optimum is shown in the orange areas. It occurs
for the density range % <a<4,ie. %Th/a) < N <47T},/ o and is maximal for o = 2, i.e.
N = 2T},/ . In particular, it does not occur at high densities (i.e., &« > 4 or N > 4T,/ ),
where the user and system optimums imply a systematic use of highways (see also [65]).
Note that the system optimum makes marginal use of the shortcut, with performance
improvement at low densities only (i.e., « <2 or N < 27}, / o).
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Figure A2 Mean travel time (upper panel) and number and proportion of drivers choosing the shortcut
(lower panels) in uniform states according to o = N®/T}, for the user optimum (A17) and
(A18) — grey curve, the system optimum (A29) and (A30) — blue dashed curve, and the ref-
erence system without the shortcut (A13) — red curve. The orange areas indicate the density
range for which the Braess paradox occurs, i.e., where the user optimum travel time with the
shortcut is greater than without the shortcut.
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