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Abstract Extensive research in pedestrian dynamics has primarily focused on crowded
conditions and associated phenomena, such as lane formation, evacuation, etc. Several
force-based models have been developed to predict the behavior in these situations. In
contrast, there is a notable gap in terms of investigations of the moderate-to-low density
situations. These scenarios are extremely commonplace across the world, including the
highly populated nations like India. Additionally, the details of force-based models are ex-
pected to show significant effects at these densities, whereas the crowded, nearly packed,
conditions may be expected to be governed largely by contact forces. In this study, we
address this gap and comprehensively evaluate the performance of different force-based
models in some common scenarios. Towards this, we perform controlled experiments in
four situations: avoiding a stationary obstacle, position-swapping by walking toward each
other, overtaking to reach a common goal, and navigating through a maze of obstacles.
The performance evaluation consists of two stages and six evaluating metrics - successful
trajectories, overlapping proportion, oscillation strength, path smoothness, speed devia-
tion, and travel time. Firstly, models must meet an eligibility criterion of at least 80%
successful trajectories and secondly, the models are scored based on the cutoff values es-
tablished from the experimental data. We evaluated five force-based models where the
best one scored 57.14%. Thus, our findings reveal significant shortcomings in the ability
of these models to yield accurate predictions of pedestrian dynamics in these common
situations.
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Figure 1 Controlled experiments illustrating four real-life scenarios. (a) Single Obstacle Single Pedestrian
(SOSP): a volunteer passing through a non-living, human-sized stationary obstacle to reach their
goal. (b) Head-On: two volunteers approaching from opposite directions, swapping their initial
positions. (c) Parallel Ped: a faster volunteer overtaking a slower one while walking in the same
direction aiming to a common goal. Snapshots at three different time intervals display the initial
condition (t = 0), midway condition (t = t1), and final condition (t = t2) for head-on and parallel
ped scenarios. d) Multiple Obstacles Single Pedestrian (MOSP): a volunteer navigating through
a randomly placed maze of obstacles to reach their goal.

1 Introduction

The dynamics of pedestrians has been studied by various models proposed over past few
decades by different researchers. These include the perspectives of the motion of indi-
vidual pedestrians in any given scenario as well as the evolution of the state of groups
of pedestrians. The types of models also vary widely and range from force-based, using
classical laws of motion [1–3], to heuristic, rule-based approaches [4]. These studies have
been accompanied by appropriate experimental ones as well, across various nations and
situations [5–8]. The central problem, one of being able to accurately model pedestrian
motion or the state of a group of pedestrians (or a crowd, which usually refers to a large
number of pedestrians at high density), is of enormous significance. This is expected to
enable the fundamental physics-based design of public infrastructure, where the aspects
of safety and mitigation of stampede-like disasters. Such successful models will have a
positive impact on public space designs across the world, more significantly in countries
like India, with high population densities.

Table 1 Details of experiments (mimicking real-life scenarios) performed with the number of runs for
each case.

Experiment # runs

SOSP 58

Head-On 25

Parallel-Ped 27

MOSP

Case A: 3.74% 239

Case B: 6.54% 188

Case C: 11.22% 184

Case D: 14.96% 276
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As discussed, various models have been proposed by earlier researchers, showing great
promise to mimic different pedestrian scenarios. These models must be systematically
evaluated to determine which one is most appropriate for a given application, based on
how well it captures the relevant properties of the scenario. We anticipate that the eval-
uation of the effectiveness of these models will involve various situations - ranging from
those involving the motion of many pedestrians to a few, with or without other obsta-
cles (stationary, may or may not be involving other human beings) around them. The
former, or crowded scenarios, include lane formation [9–11], bottleneck [10, 12], evacu-
ation [13–17], and crowd intersection [18–20], extensively documented in the literature.
Evaluation metrics for these scenarios include fundamental diagrams [21–23], density
measure [24], velocity fields [25], etc. There are empirical studies on different crowded
scenarios in the literature [26,27]. These studies provide benchmarks for assessing model
performance in crowded conditions. However, note that all these situations involve a high
density crowd, at closely packed conditions. Under such conditions, the close contact
interactions are expected to govern pedestrian motion rather than the fundamental inter-
actions between them, which might be active when they have some gaps around each other
to move and manoeuvre. Thus, almost all reasonable force-based models (and maybe even
rule based ones) may be expected to converge to similar answers for such highly packed
scenarios. Interesting differences may be anticipated in moderate-to-low density situa-
tions, where the details of the interaction between pedestrians at some distance (i.e. not in
close contact) are likely to influence the motion of individual pedestrians. Interestingly, in
sharp contrast to crowded scenarios, much fewer studies focus on moderate-to-low den-
sity scenarios. Typically, such studies focus on the measurement of specific features like
personal space [28, 29], gait features [30–32], etc., rather than the comparison of motion
of pedestrians in situations from experiments and models. Thus, since such situations
are not clearly established, the aspect of model evaluation with varying details of forces
(and rules) remains incomplete. Hence, there exists a critical gap in terms of establish-
ing benchmarks for evaluating pedestrian dynamics models, which we would address in
this article. Note, a gap also exists for such comparisons involving Indian pedestrians, as
most of the earlier investigations were performed in western or eastern nations. In this
context, we note that such moderate-to-low density conditions are extremely common in
various public spaces at all times, across India and other nations with large population
densities. Our investigations here also extends to high density situations involving one
moving pedestrian among many stationary obstacles (may or may not be humans). In
this context, in a previous study, we have shown that the behavior of a single pedestrian
around a non-living obstacle is similar to that around a similar-sized human being [33].
Ideally, we expect all the models to perform reasonably well at both high, moderate and
low densities, but our study here proves the contrary (as shown later in the article).

From the perspective discussed above, this study addresses this gap for various force-
based models in the literature. We focus on common situations at the moderate-to-low
density regimes, where the details of interactions will govern the pedestrian motion. In
the process, we have two broad objectives. Firstly, the benchmarking criteria for such sit-
uations are established, such that any future models can be evaluated similarly. Secondly,
various force-based models present in the literature are evaluated within this criteria. To-
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wards this, our study performs controlled experiments across four commonplace real-life
scenarios (Figure 1), and respective data collection is given in Table 1. As explained
later, these situations include one or two pedestrians, in the absence or presence of other
stationary obstacles. These obstacles may represent other human beings (stationary) or
inanimate objects (like pillars or similar objects). The number of obstacles is varied to tra-
verse various regimes of density. Bottinelli and Silverburg observe instances where high-
density crowds behave similarly to soft solids [34]. Here, the term “density” is used in the
broader sense of the total number of objects within the experimental area, including the
pedestrians. For evaluation across models, we use six evaluating metrics - successful tra-
jectories, overlapping proportion, oscillation strength, path smoothness, speed deviation,
and travel time, as explained in the article. There are many force-based models present
in the literature [1–3, 35–37]. We evaluate five that are frequently used for applications
- Universal Power Law (UPL) [1], Social Force Model - circular (SFMc) [35], Social
Force Model - elliptical (SFMe) [2], Centrifugal Force Model - circular (CFMc) [36], and
Centrifugal Force Model - elliptical (CFMe) [3]. These models were tested against the
selected situations and evaluated using a scoring system based on a two-stage evaluation
process, as explained later. In the first stage, models are assessed against specific eligi-
bility criteria to determine their suitability. In the second stage, a finer comparison of the
models is performed based on cutoff values established from experimental data. As high-
lighted later, our findings reveal significant deficiencies in the ability of force-based mod-
els to predict experimental pedestrian behavior. To regenerate the experimental scenarios
and calculate evaluating metrics for scoring, initial position, final position, and desired
speed for each volunteer and maximum travel time in each scenario are provided https:
//github.com/kanika201293/Pedestrian-Experimental-Data.

2 Methodology

2.1 Experimental Setup

In this study, we conducted controlled experiments for four different low to moderate
density real-life-based scenarios. Note, all these scenarios involve 1-2 pedestrians, but
some also have a high density of stationary obstacles. However, all of these represent
commonly occurring everyday situations. Note, from the point of view of the moving
pedestrian, an obstacle is equivalent to a stationary similar-sized human, as shown in our
earlier study [33]. We selected obstacles that have similar diameter as a human being. Ta-
ble 1 provides details of the experiments and data collection procedure. The experimental
boundary was defined as a rectangular area with x = 0 m to x = 10 m and y =−1.75 m to
y = 1.75 m, with the measurement region spanning from x = 2 m to x = 8 m. The experi-
ments conducted are as follows:

1. Single Obstacle Single Pedestrian (SOSP): In this scenario, a single volunteer must
reach a specified goal by avoiding a non-living, human-sized stationary obstacle placed
in the middle of the path. Figure 2(a) shows the schematic of the setup.

https://github.com/kanika201293/Pedestrian-Experimental-Data
https://github.com/kanika201293/Pedestrian-Experimental-Data
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Figure 2 Schematic of all the experimental setups within a boundary defined as x = 0 m to x = 10 m and
y =−1.75 m to y = 1.75 m. The measurement region spans from x = 2 m to x = 8 m. For future
reference, volunteer/simulated pedestrian A is represented by a filled circle, and an empty circle
represents volunteer/simulated pedestrian B.
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2. Head-On: In the head-on scenario, two volunteers, denoted as A and B, walk towards
each other at their desired speeds with the objective of exchanging their initial positions
to reach their respective goals. A schematic illustrating this scenario is shown in Figure
2(b). Thus, the initial position of A is the goal of B and vice-versa.

3. Parallel-Ped: In the parallel-ped scenario, two volunteers, denoted as A and B, share
a common destination, as illustrated in Figure 2(c). Volunteer A is initially positioned at
a separation of 2 meters, behind volunteer B and has a tendency to walk at a faster pace
than volunteer B. Consequently, it is expected that volunteer A will surpass B and both of
them will walk towards the common goal.

4. Multiple Obstacles Single Pedestrian (MOSP): In this case, a single pedestrian
passes through a maze of randomly placed obstacles to reach the goal. A series of exper-
iments are performed by varying the area fraction occupied by the obstacles. Figure 2(d)
gives a schematic of randomly placed obstacles covering 11.22% of the area. The exper-
iment is repeated for four different area fractions: 3.74%, 6.54%, 11.22%, and 14.96%.
The initial and final positions of a volunteer were selected randomly between position
numbers 1 to 6, marked by circles (see Figure 2(d)).

2.2 Evaluating metrics

The following are the metrics used in this study to evaluate the performance of any model,
for any given scenario.

Successful Trajectories: A trajectory is defined as unsuccessful when it fulfills any of
the following conditions in the simulation.

• The time taken by the pedestrian to reach the goal exceeds twice the maximum
travel time in the corresponding experimental setup, i.e., the pedestrian is stuck in
between the path. Note that no stuck condition is observed during experiments.

• At any instant, the maximum overlap between a pedestrian and an obstacle or an-
other pedestrian exceeds fifty percent.

• At any instant, more than fifty percent of the pedestrian’s body extends outside the
experimental setup boundary.

The number of successful trajectories for a particular scenario is determined by sub-
tracting the number of unsuccessful trajectories from the total number of trajectories.

Overlapping Proportion: “Overlapping” between two pedestrians or between a pedes-
trian and an obstacle occurs when their geometrical form overlaps. In this study, all the
pedestrians and obstacles are modeled as circles. A measure of the extent of overlap is
defined earlier by Chraibi et. al. [3], as follows:
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o(v) =
1

nov

t=tend

∑
t=0

i=N

∑
i=1

j=N

∑
j>i

oi j (1)

oi j =
Ai j

min(Ai,A j)
≤ 1

Here, N represents the total count of simulated pedestrians, Ai and A j denote the areas
of the circular pedestrians i and j, respectively, and the variable Ai j represents the over-
lapping area between the two. In (1), the expression is normalized by the parameter nov,
representing the number of simulation steps where overlapping appears. nov is 0 if there is
no overlapping during the whole simulation. In order to evaluate the models thoroughly,
the maximum overlap is also calculated in some cases.

Oscillation Strength: Backward movements of a pedestrian (opposite to the direction
of the goal) during a simulation are called oscillations. Such movements are unrealistic
in nature and need to be addressed in a model. To quantify the oscillations, we used the
following measure introduced by Chraibi et al. [3]:

o(s) =
1

nos

t=tend

∑
t=0

i=N

∑
i=1

Si (2)

Si =
1
2
(−si + |si|)

si =
−→vi ·−→vi

0

(v0
i )

2

Here, N represents the total count of simulated pedestrians, −→vi is the current velocity,

and
−→
v0

i is the desired velocity of pedestrian i. In (2), the expression is normalized by
the parameter nos, representing the number of simulation steps where oscillation appears;
nos is set to 0 if there is no oscillation during the whole simulation. Note that the desired
velocity is the desired speed of the pedestrian towards the goal.

Path Smoothness: This metric measures the smoothness of a path by identifying any
sudden changes in path direction. It is calculated by measuring the maximum absolute
change in the path angle which is calculated at each time instant. Let

−→
Pt be the position

vector of the pedestrian at time instant t. The displacement vector
−→
Vt is defined as the

change between position vectors
−→
Pt and

−−→
Pt+1. The angular deviation of path, θt is the an-

gle between the displacement vectors
−→
Vt and

−−→
Vt+1. Path smoothness, θi, for pedestrian i, is

then the maximum of the absolute value of angles θt . The lower value of θi denotes higher
path smoothness for the pedestrian. The quantitative calculation of path smoothness is as
follows:
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PS =
1
N

i=N

∑
i=1

θi (3)

−→
Pt : position vector at t time instant
−→
Vt : displacement vector (

−−→
Pt+1 −

−→
Pt )

θt : angle between vectors (
−−→
Vt+1 −

−→
Vt )

θi : max{θt}

Here, N refers to the total count of simulated pedestrians where pedestrians are denoted
by i.

Speed Deviation: Speed deviation is defined as the average of the absolute change in
speed relative to the desired speed at each time instant (t).

SD =
1
N

i=N

∑
i=1

1
nsd

t=tend

∑
t=0

|v0
i − vi(t)|

v0
i

(4)

Here, v0
i represents the desired speed, and vi(t) represents the speed at time instant t,

respectively for pedestrian i. nsd refers to the number of simulation steps and N refers to
the total count of simulated pedestrians.

Travel Time: This metric represents the total time taken by a pedestrian to traverse the
measurement area. During simulation, a trajectory is deemed unsuccessful if the time
taken by the simulator exceeds twice the maximum travel time recorded during the exper-
iment.

Note the following for our calculations in this study:
1) Single values of evaluating metrics for all the scenarios are calculated (shown in Table
2), by averaging over all the trajectories.
2) All the evaluating metrics are calculated in the measurement region to avoid entry/exit
effects.

2.3 Experimental Observations

In this section, we calculate the evaluating metrics defined in Section 2.2 for all experi-
mental setups to establish a benchmark for assessing pedestrian dynamics models in these
common scenarios. The values of these metrics are summarized in Table 2. Results show
no unsuccessful trajectory in any scenario, which shows that the experimental setups, in-
cluding all cases of MOSP, are such that: a) each pedestrian is able to find a path to their
goal without fail, b) pedestrians are not squeezed or overlapped by more than 50% with
other pedestrian or obstacles at any time, c) pedestrians remain within the defined exper-
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Table 2 Evaluating metrics are calculated from the trajectories for all the experimental setups to define a
benchmark to evaluate the functioning of pedestrian dynamics models for low pedestrian density
scenarios. The experiments show no unsuccessful trajectories, oscillations, or overlaps. Path
smoothness, measured by the change in angle between two consecutive motion vectors, ranges
from 0 to 2 degrees. The speed deviation from the desired speed at any instant is not more than
23%. Additionally, the average travel time for volunteers is provided for each case.

Experimental Setup
Successful
Trajectories

Avg.
Overlap

Avg.
Oscillation Path Smoothness Speed Deviation Travel Time

SOSP 100% 0.08% 0 0.74±0.33◦ 0.05±0.03 4.52±0.89s

Head-On 100% 0% 0 0.55±0.12◦ 0.02±0.01 3.97±0.29s

Parallel Ped 100% 0% 0 0.77±0.18◦ 0.05±0.04 5.21±1.4s

MOSP

Case A: 3.74% 100% 0% 0 0.42±0.29◦ 0.05±0.03 4.16±0.55s

Case B: 6.54% 100% 0% 0 0.69±0.47◦ 0.11±0.08 4.31±0.55s

Case C: 11.22% 100% 0.11% 1.1E-03 1.08±0.51◦ 0.16±0.07 4.67±0.69s

Case D: 14.96% 100% 0% 0 0.93±0.36◦ 0.09±0.05 4.7±0.61s

imental boundaries. Additionally, there are negligible instances of oscillation or overlap
observed in any setup during the experiments. Path smoothness was measured by the
change in angle between two consecutive motion vectors, and it remained within a low
range of 0 to 2 degrees across all setups. This indicates that there were no sudden changes
in the direction of motion, even when multiple obstacles were present. The maximum
deviation from the desired speed observed among all scenarios was within the range of
24% of the value, demonstrating that pedestrians tend to maintain a consistent speed re-
gardless of obstructions. Furthermore, the average travel time for volunteers was recorded
for each case, providing additional insights into pedestrian dynamics. These evaluation
metrics serve as a reliable benchmark for testing the effectiveness of pedestrian dynamics
models in these situations.

3 Simulation results from force-based models

In this section, the experimental scenarios are reproduced using five force-based models,
maintaining the exact initial and final positions observed during the experiments. Data for
the same in each scenario are provided at https://github.com/kanika201293/
Pedestrian-Experimental-Data. The values of the evaluating metrics are cal-
culated from the simulations to assess the models’ ability to predict the experimental
outcomes. Additionally, a metric for maximum overlap is introduced to provide a more
comprehensive evaluation of the models.

In our study, we considered five force-based models to replicate the aforementioned
scenarios for the same initial, final positions and desired speeds, as provided by the vol-
unteers. Force-based models represent pedestrians as inertial particles that experience

https://github.com/kanika201293/Pedestrian-Experimental-Data
https://github.com/kanika201293/Pedestrian-Experimental-Data
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forces on the basis of their surroundings, allowing for the quantification of their behavior.
The existing literature identifies three primary forces for motion commonly classified as
self-driving force, interaction force, and contact force. The self-driving force enables the
pedestrian to reach the goal at some desired speed. A pedestrian ideally should not col-
lide with any other pedestrian or obstacle present in the path. This collision avoidance is
fulfilled by a repulsive force, which is termed here as the interaction force. In the case of
high pedestrian density, sometimes a pedestrian experiences physical contact with fellow
pedestrians or obstacles. The force exerted on the pedestrian due to this physical contact
is known as contact force. Contact force is primarily significant in high pedestrian density
or panic situations where force experienced by the pedestrian due to physical contact is
not under the control of the person. The situations reproduced in this paper are common
but at low-to-moderate densities, thereby avoiding the need for contact force. The five
force-based models are as follows:

Universal Power Law (UPL): The UPL is developed by Karamouzas et al. (2014)
[1], which is formulated after an empirical analysis of two major crowd datasets. The
fundamental concept is that the strength of the interaction force is determined only by a
single factor, namely, the time-to-collision, denoted as τ . This term inherently influences
the angle-dependent nature of interaction force. Note, interaction with walls utilizes the
same formula provided that the pedestrian velocity is directed towards the nearest point
to the wall, where the nearest point is treated as a static obstacle with a radius equal to 0 m.

Social Force Model - circular (SFMc): Helbing is one of the earliest researchers to
develop a model to study pedestrian dynamics, i.e., Social Force Model [2]. SFM has
been improved occasionally to bring the simulation results closer to reality. SFMc is a
straightforward version of the social force model where the interaction force is only a
function of surface-to-surface distance between the pedestrian and the entity. The inter-
action region of the pedestrian in this case is in the form of a circle [35].

Social Force Model - elliptical (SFMe): One of the earliest versions of social force
models used the interaction region of a pedestrian in the form of an ellipse, which is
oriented towards the direction of motion [2]. In this case, the force is dependent on the
distance as well as the velocity of the pedestrian.

The derived formulae and optimized values of parameters for SFMc and SFMe are
taken from the article published by Johansson et al. (2007) [38].

Centrifugal Force Model - circular (CFMc): The idea of the centrifugal force model
was first proposed by Yu et al. (2005) [39] that has a resemblance to the concept of “cen-
trifugal force”. Subsequently, Chraibi expanded upon the model, see [3, 36]. Similar to
SFM, CFM also has a circular and elliptical interaction region distinguished by different
definitions of the distance between the pedestrian and the obstacle. For CFMc, the radii of
circular potential regions of pedestrians are dependent on the respective velocities. Note
that in the case of a stationary pedestrian, the radius of the interaction region takes the
minimum value of the actual radius of the entity.
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Table 3 Comparison of the five force-based models with experimental data using different evaluating
metrics for SOSP

Successful
Trajectories

Avg.
Oscillation

Avg.
Overlap

Max.
Overlap Path Smoothness Speed Deviation Travel Time

Experiment 100% 0 0.08% 0.2% 0.74±0.33◦ 0.05±0.03 4.52±0.89s

UPL 100% 0 0% 0% 3.33±0.88◦ 0.06±0.04 4.53±0.78s

SFMc 17.86% 0 35.87% 100% 0.05±0.01◦ 0.02±0 4.27±0.75s

SFMe 98.21% 0 2.27% 52.75% 27.33±64.12◦ 0.3±0.08 6.27±1.68s

CFMc 100% 0 1.29% 33.1% 0.49±0.13◦ 0.31±0.07 6.27±1.13s

CFMe 100% 0 0% 0% 0.45±0.2◦ 0.34±0.08 6.53±1.09s

Centrifugal Force Model - elliptical (CFMe): In this model, the potential region of
a pedestrian is elliptical in nature where minor and major axes are dependent on the mo-
tion of the pedestrian.

Note that, for all the models, the simulation time step size ∆t is set as 0.01 s, the max-
imum time step size that avoids numerical instability (refer to Supplementary material).
This study assigns specific colors for each force-based model and the experimental data.
The color coding remains consistent throughout the article.

Simulation Results

SOSP: As mentioned earlier, in this case, a pedestrian aims to reach a goal by avoiding
a stationary obstacle placed in the middle of the path. Figure 2(a) illustrates the initial
position of pedestrian A (taken as (0, 0)). In real-life situations, it is unlikely that a person
stands exactly at the expected position without any offset. During the experiment, we
observed that 58 participants had an average offset of 0.09 m with a standard deviation of
0.07 m from their indicated initial position (0, 0). The participants’ average desired speed
(speed without any obstacle) was 1.47 m/s with a standard deviation of 0.16 m/s.

Assuming a pedestrian starts from the exact initial position so that the pedestrian, the
obstacle, and the goal are collinear, as shown in the schematic diagram, simulations using
the UPL model predicts the pedestrian getting stuck after reaching near the obstacle po-
sitioned in the middle (refer to Figure 3(a)). The collinearity of the pedestrian, obstacle,
and goal results in attractive and repulsive forces, also collinear but opposite in direction.
As the pedestrian approaches the obstacle, the repulsive force increases, counterbalancing
the self-driving force. Due to the absence of any transverse force, the pedestrian cannot
change its direction and remains stuck. The same problem of collinearity is also observed
in the case of all other force-based models considered in this study.

Figure 3(a) shows that the trajectories for all models overlap, indicating no transverse
displacement due to collinear forces. The pedestrian gets stuck just before the obstacle
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(a)

(b)

Figure 3 (a) Trajectories for all models show overlap, showing no transverse displacement due to collinear
forces. Pedestrians get stuck before the obstacle in all models except for SFMc, where pedestrian
can pass through the obstacle due to low repulsion. (b) Normalized speed plotted against the
x-component of the pedestrian’s position. Speeds for all models approach 0 m/s, indicating
pedestrians get stuck, except for SFMc. SFMe exhibits oscillation before getting stuck, indicated
by negative velocity.
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(a) Trajectory graphs (Multimedia available online)

(b) Normalized speed graph

Figure 4 SOSP: (a) Trajectories and (b) Normalized speed for experimental and simulated trajectories.
The experimental data shows anticipatory direction changes with minimal speed change to avoid
the obstacle. In contrast, simulated models, except SFMc, exhibit sudden direction changes near
the obstacle, resulting in velocity dips. Overlaps with the obstacle are noted for SFMc, SFMe,
and CFMc, with no oscillation or backward motion (V < 0m/s) observed in any model.
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in all models except SFMc, where overlap with the obstacle is observed, allowing the
pedestrian to reach the goal without deviation. In SFMc, the collinearity problem results
in no transverse movement, and the low repulsive force of the model leads to overlap. The
normalized speed is shown against the x-component of the pedestrian’s position in Figure
3(b). We observe that the speeds for all models approach 0, indicating that pedestrians get
stuck, except for SFMc. As discussed earlier, due to the low repulsive force magnitude,
the pedestrian continues with overlap with no decrement in speed.

However, in real-life scenarios, it is unlikely that a person stands precisely in the ex-
pected position with no offset. Trajectories and normalized speed profiles for one of the
data are plotted in Figure 4 (multimedia available online). In this case, the volunteer in
the experiment started with an offset as low as 11 mm, yet there were no sudden changes
in the trajectory or speed during the experiment, unlike simulation results. As explained
next, all models showed significant slowdown of the pedestrian as it approached the ob-
stacle in the simulations, which is in sharp contrast to the experimental observations. The
possible reason behind such behavior is force-based models relying on forces to navigate
around the obstacles, which naturally leads to a change in the magnitude of the velocity
(speed), as can be seen in Figure 4(b).

While simulating the experimental scenarios using force-based models using the same
initial and final positions, we calculated and reported the corresponding evaluating met-
rics in Table 3. Model SFMc predicted over 80% unsuccessful trajectories, SFMe showed
less than 2% unsuccessful trajectories, while all other models had all successful trajec-
tories. The large number of unsuccessful trajectories for model SFMc is primarily due
to high overlap, with a maximum overlap of 100%. This high failure rate stems from
SFMc’s weak interaction force, leading to an inability to avoid obstacles effectively, as
depicted in Figure 4(a) (multimedia available online). Some overlap was observed in
models SFMe and CFMc, but no overlap occurred with UPL and CFMe. No backward
motion or oscillation was reported for any model. However, sudden changes in direction
were noted under the ‘path smoothness’ metric, with model SFMe showing a maximum
change exceeding 90 degrees, as illustrated in the trajectory. It is important to note that
human walking is inherently less smooth than simulated motion, which can result in lower
path smoothness values in simulations compared to experimental values in some cases.
Large speed deviations from the desired speed were observed in models SFMe, CFMc,
and CFMe, evident in the velocity dips highlighted in Figure 4(b). These speed slow-
downs significantly increased travel time for these three models, and respective values are
provided in Table 3.

An evaluation of force-based models for SOSP revealed that model SFMc had less than
20% successful trajectories due to weak interaction forces resulting in high overlap. In
contrast, models SFMe had only a few unsuccessful trajectories, while UPL, CFMc, and
CFMe had none. Additionally, models UPL and SFMe exhibited sudden changes in path
direction, and models SFMe, CFMc, and CFMe experienced significant speed deviations,
which led to increased travel times. Note, nearly all models failed when the pedestrian,
obstacle, and goal are collinear with zero offset, as discussed earlier.

Head-On: One example from the head-on experiments is plotted in Figure 5 (multime-
dia available online). In trajectory plots, solid lines with filled circles represent pedestrian
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(a) Trajectory graphs (Multimedia available online)

(b) Normalized speed (Ped A) graph

Figure 5 Head-On: (a) Trajectories and (b) Normalized speed (Ped A) graphs are presented for both
experimental and simulated data. The experimental data indicates an anticipatory change in di-
rection to avoid collisions, with minimal speed fluctuations. In the trajectory plots, solid lines
with filled circles represent pedestrian A, while dashed lines with empty circles represent pedes-
trian B. The velocity profiles show a dip when avoiding collisions in all models except SFMc.
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Table 4 Comparison of the five force-based models with experimental data using different evaluating
metrics for Head-On.

Successful
Trajectories

Avg.
Oscillation

Avg.
Overlap

Max.
Overlap Path Smoothness Speed Deviation Travel Time

Experiment 100% 0 0% 0% 0.55±0.12◦ 0.02±0.01 3.97±0.29s

UPL 100% 0 0% 0% 2.81±0.44◦ 0.03±0.03 3.99±0.31s

SFMc 52.38% 0 24.68% 97.8% 0.05±0.01◦ 0.01±0.0 3.89±0.26s

SFMe 76.19% 0 11.4% 81.66% 10.03±38.29◦ 0.11±0.03 4.41±0.45s

CFMc 100% 0 0.02% 0.64% 0.59±0.23◦ 0.28±0.07 5.45±0.69s

CFMe 80.95% 0 9.55% 74.2% 8.62±4.73◦ 0.38±0.06 6.08±0.44s

Figure 6 ParallelPed: (a) Trajectories (Multimedia available online) and (b) normalized speed graphs are
presented for both experimental and simulated data. In the experiment, pedestrian A (faster,
solid line with filled circles) avoids pedestrian B (slower, dashed line with empty circles) by
changing direction, while B continues without interruption. Both show minimal speed changes.
In simulations, A is unable to overtake B, resulting in straight-line trajectories in all models
except UPL. Velocity profiles indicate A fails to reach its desired speed in SFMe, CFMc, and
CFMe models, while B maintains consistent speed, with B experiencing a push effect in SFMe.
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Table 5 Comparison of the five force-based models with experimental data using different evaluating
metrics for Parallel-Ped.

Successful
Trajectories

Avg.
Oscillation

Avg.
Overlap

Max.
Overlap Path Smoothness Speed Deviation Travel Time

Experiment 100% 0 0% 0% 0.77±0.18◦ 0.05±0.04 5.21±1.4s

UPL 100% 0 0% 0% 3.03±1.08◦ 0.02±0.01 5.0±1.2s

SFMc 66.67% 0 15.61% 95.25% 0.04±0.02◦ 0.04±0.01 5.01±1.2s

SFMe 100% 0 0% 0% 0.03±0.03◦ 0.22±0.05 4.71±0.26s

CFMc 100% 0 0% 0% 0.05±0.05◦ 0.19±0.1 5.56±0.83s

CFMe 100% 0 0% 0% 0.04±0.05◦ 0.18±0.15 5.93±0.57

A, and dashed lines with empty circles denote pedestrian B. Table 4 reports the evaluating
metrics for head-on scenarios simulated using force-based models. Unsuccessful cases
are predicted for models SFMc, SFMe, and CFMe, with high overlapping proportions.
For SFMc and SFMe, the overlap is also evident from the trajectories shown in Figure
5(a) (multimedia available online). Models UPL and CFMc report 0% and less than 1%
maximum overlap, respectively, and no oscillation is observed in any model. Large sud-
den deviations in the direction of motion are observed in models SFMe and CFMe, also
shown in the trajectory. The metric of path smoothness measures the sudden change in
the direction of motion rather than the overall change in the path. Hence, the value of
path smoothness is lower for CFMc relative to CFMe. Although the overall deviation is
large for CFMc, it is smoother compared to the abrupt changes observed in CFMe’s tra-
jectory at around x = 4 m in Figure 5(a) (multimedia available online). Significant speed
deviations are reported for models CFMc and CFMe, as can also be seen in the velocity
profiles of Figure 5(b). Consequently, these models also exhibit longer travel times, as
indicated in Table 4. For other models, the simulation predicts travel times similar to the
experiments.

An evaluation of force-based models for the head-on simulations reveal that models
SFMc and SFMe predict less than 80% successful trajectories, characterized by high
overlap. Model CFMe has a few unsuccessful trajectories, while models UPL and CFMc
had none. Furthermore, sudden changes in path direction were observed in models UPL,
CFMe, and SFMe, and significant speed deviations were noted in models SFMe, CFMc,
and CFMe, contributing to increased travel times. Note, similar to the previous case, mod-
els also fail for collinear pedestrians in Head-On simulations, in contrast to experiments.

Parallel-Ped: In this scenario, two pedestrians, A and B, share a common goal, as
illustrated in Figure 2(c). One example of speed profiles and trajectories for both pedes-
trians generated using force-based models are provided in Figure 6 (multimedia available
online). In trajectory plots, solid lines with filled circles represent pedestrian A, while
dashed lines with empty circles represent pedestrian B. Evaluating metrics obtained from
simulations are shown in Table 5. The model SFMc predicted more than 30% unsuccess-
ful trajectories due to large overlap in most cases, with a maximum overlap of 95.25%.
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Table 6 Comparison of the five force-based models with experimental data using different evaluating
metrics for MOSP.

MOSP Successful
Trajectories

Avg.
Oscillation

Avg.
Overlap

Max.
Overlap Path Smoothness Speed Deviation Travel Time

Case A: 03.74%

Experiment 100% 0 0% 0% 0.42±0.29◦ 0.05±0.03 4.16±0.55s

UPL 100% 0.01 0% 0% 2.58±1.5◦ 0.07±0.06 4.23±0.51s

SFMc 61.51% 0 18.3% 100% 0.04±0.01◦ 0.01±0.0 3.96±0.45s

SFMe 83.26% 0.07 0.42% 27.4% 29.04±64.65◦ 0.42±0.18 7.34±3.44s

CFMc 100% 0 1.6% 39.5% 0.56±0.51◦ 0.38±0.14 6.73±1.7s

CFMe 92.05% 0 6.19% 100% 1.27±10.83◦ 0.41±0.12 7.07±2.03

Case B: 06.54%

Experiment 100% 0 0% 0% 0.69±0.47◦ 0.11±0.08 4.31±0.55s

UPL 100% 0.02 0% 0% 5.46±5.07◦ 0.18±0.15 4.9±1.41s

SFMc 26.06% 0 27.35% 100% 0.05±0.01◦ 0.03±0.0 3.86±0.52s

SFMe 31.38% 0.07 7.31% 68.2% 108.31±86.9◦ 0.75±0.24 13.74±6.99s

CFMc 87.77% 0 2.29% 50.73% 12.88±37.51◦ 0.57±0.14 9.71±4.08s

CFMe 96.81% 0 1.27% 97.23% 3.3±17.37◦ 0.58±0.07 7.07±2.03

Case C: 11.22%

Experiment 100% 1.1E-03 0.11% 0.18% 1.08±0.51◦ 0.16±0.07 4.67±0.69s

UPL 60.33% 0.01 0% 8.52% 82.54±77.23◦ 0.58±0.3 12.15±6.8s

SFMc 3.8% 0 31.53% 100% 0.06±0.01◦ 0.03±0.0 3.92±0.52s

SFMe 0% 0.01 1% 77.45% NA NA NA

CFMc 84.24% 0 6.23% 100% 7.56±27.4◦ 0.7±0.08 13.46±2.86s

CFMe 11.95% 0 26.44% 100% 73.58±65.29◦ 0.74±0.15 14.89±3.79

Case D: 14.96%

Experiment 100% 0 0% 0% 0.93±0.36◦ 0.09±0.05 4.7±0.61s

UPL 56.52% 0.01 0% 0.99% 90.3±79.66◦ 0.62±0.29 13.74±7.35s

SFMc 21.01% 0 28.92% 100% 0.07±0.01◦ 0.04±0.0 4.3±0.44s

SFMe 0% 0 0% 0% NA NA NA

CFMc 72.46% 0 13.57% 100% 13.06±37.16◦ 0.69±0.15 14.94±4.13s

CFMe 6.88% 0 33.76% 100% 47.83±62.57◦ 0.71±0.17 14.18±4.31
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For scenarios SOSP, head-on, and parallel ped, involving only two entities, the main cause
of unsuccessful trajectories is overlap rather than the pedestrian getting stuck. Oscillations
are not predicted in any model for this scenario. The trajectories of pedestrian A in Figure
6(a) (multimedia available online) indicate that, for most models, the faster pedestrian A
is unable to overtake the slower pedestrian B, resulting in mostly straight-line trajecto-
ries. However, in experiments, pedestrian A overtakes B, in contrast to these simulated
predictions. Thus, path smoothness for most models is better than the experimental value,
except for UPL. In the UPL model, pedestrian A successfully overtakes pedestrian B.
However, pedestrian B also changes the path direction to allow passage for pedestrian
A, unlike during the experiment where A finds its own path without affecting B’s mo-
tion. This is logical as pedestrian B, positioned ahead of A, cannot see A and should not
alter its path. For UPL, sudden direction change for both pedestrians ranges from 2 to
4 degrees. Models SFMe, CFMc, and CFMe exhibit significant speed deviations from
the desired speed, with maximum deviations between 20% and 48%. Large deviation in
velocities from the desired speed (Vdes) is also observed in the normalized speed plots
given in Figure 6(b)-(c). For these models, pedestrian A cannot overtake B, resulting in
a slower speed of A (Figure 6(b)), while the speed of B is maintained for models CFMc
and CFMe (Figure 6(c)). The SFMe model shows an unrealistic push effect on pedestrian
B, increasing the speed by up to 1.4 times. The models predicted travel times similar to
the experiment.

An evaluation of force-based models for parallel pedestrian scenarios revealed that
SFMc had fewer than 80% successful trajectories and exhibited significant overlap, whereas
all other models had 100% successful trajectories. Sudden changes in path direction were
noted exclusively in model UPL, while significant speed deviations were observed in
models SFMe, CFMc, and CFMe, leading to increased travel times. Apart from UPL,
all models predicted A being behind B and getting slowed down, in contrast to experi-
ments. However, as noted earlier, UPL predicts a path change of B, which contradicts the
experiments.

MOSP: In the MOSP scenario, a single pedestrian passes through a maze of randomly
placed obstacles to reach the goal, with experiments conducted across four area fractions:
3.74% (Case A), 6.54% (Case B), 11.22% (Case C), and 14.96% (Case D). Evaluating
metrics calculated by reproducing each setup for the exact initial and final conditions are
reported in Table 6. These show that as the area fraction covered by the obstacles in-
creases, the number of unsuccessful trajectories also increases. While it is commonly re-
ported in the literature that force-based models perform well in complex scenarios such as
lane formation under moderate to high densities, our findings indicate a decline in model
performance as density increases. However, one difference in our situations considered
here is the aspect of navigation around a crowded zone with static obstacles, unlike the
dynamics in a crowd where every pedestrian is mobile.

Note, such situations of pedestrians walking around several other stationary obstacles
(or other standing pedestrians) are extremely common across crowded public spaces, like
railway stations, bus stations, food joints etc. In MOSP, the large number of obstacles
leads to unsuccessful trajectories due to a combination of three factors mentioned in Sec-
tion 2.2. For the SFMe model, no successful trajectories were observed in Cases C and
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D, as high repulsive forces prevented pedestrians from entering the measurement region,
resulting in ‘Not Attempted (NA)’ for these cases, (refer to Appendix Figure B-5(b)).
Surprisingly, the SFMc model showed an increase of successful trajectories from Case C
to D due to the obstacle configuration favorable for the model, allowing the pedestrian to
reach the goal with low overlap, even when there is a minimal deviation in path due to
the weak repulsive forces of the model (refer to Supplementary material Figure B-5(a)).
Both average and maximum overlaps increased with area fraction. However, this metric
is influenced by obstacle configuration, pedestrian position, and the number of interact-
ing obstacles. Thus, this trend should not be seen as a rule. Insignificant oscillation or
backward motion was observed across all models. As the number of obstacles increased,
the number of turns required to pass through the maze also increased, leading to higher
sudden changes in motion direction, reflected in large path smoothness values. Due to
frequent changes in path direction, speed deviation from the desired speed also increases
with the area fraction. Normalized speed graphs for the four cases, averaged over all the
trajectories, can be observed in Supplementary material Figure B-4. However, the SFMc
model reported low path smoothness and speed deviation, resulting in increased travel
time with area fraction for all models except SFMc. However, note that the proportion of
successful trajectories with SFMc is pretty low (< 25%) for both area fractions.

In the MOSP scenario, the study reveals that as obstacle density increases, the fre-
quency of unsuccessful trajectories rises, with no model achieving an 80% success rate at
the density of 14.96%. The pedestrian models exhibit widely divergent responses to these
challenges: the SFMe model completely fails in higher-density conditions, whereas the
SFMc model demonstrates improved success rates, along with reduced path smoothness
and speed deviation, due to favorable obstacle configurations for the model. The anal-
ysis also shows that with an increase in obstacles, there is a corresponding rise in path
complexity, speed deviation, and travel time. However, these trends are not universally
applicable, as they depend on the specific configurations of obstacles and the positioning
of pedestrians. As discussed, this is a common scenario in any public gathering/space,
where one person may need to navigate around obstacles and other people to reach a dif-
ferent location. For such an everyday scenario, simulation models predicting unsuccessful
trajectories reveal serious shortcomings.

4 Evaluation of Models

The evaluation procedure involves two stages:

• Stage I: The models must meet an eligibility criterion of at least 80% successful
trajectories (Table 7).

• Stage II: The shortlisted models are then evaluated using a scoring system, where
a model’s score is determined by the number of times its evaluating metrics fall
within the specified cutoff values (Table 8, 9).
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Table 7 Stage I: Models meeting eligibility criteria are reported in this table. For each experimental setup,
models achieving more than 80% successful cases are marked as ✓, otherwise ×. Models with
the number of ✓ greater than or equal to the number of × are shortlisted for further evaluation in
Stage II, given in Table 8.

UPL SFMc SFMe CFMc CFMe

SOSP ✓ × ✓ ✓ ✓

Head-On ✓ × × ✓ ✓

Parallel Ped ✓ × ✓ ✓ ✓

MOSP:

Case A(03.74%) ✓ × ✓ ✓ ✓

Case B(06.54%) ✓ × × ✓ ✓

Case C(11.22%) × × × ✓ ×

Case D(14.96%) × × × × ×

Elig. NE NE Elig. Elig.

In Table 7, the first stage of the models’ eligibility criteria is reported. For each ex-
perimental scenario, models achieving more than 80% successful cases are marked as ✓;
otherwise, they are marked as ×. Models with a number of ✓ greater than or equal to the
number of × are shortlisted for further evaluation in Stage II; Otherwise considered as
‘Not Eligible (NE)’. This eligibility criterion primarily determines if a model can provide
simulation results comparable to the experimental results for the situations considered.
Table 7 clearly indicates that the UPL, CFMc, and CFMe models perform well (> 80%
successful trajectories) for most situations considered. Note that this study does not im-
ply that the remaining models are entirely ineffective, but rather that they are not suitable
for these common situations with their current parametric values (refer to Section C in
the Supplementary material for more details). A search across the parameter space of the
models is beyond the scope of this article. Interestingly, almost all models are unsuccess-
ful for the MOSP scenarios with higher obstacle densities.

In the second stage, ✓ and × marks are again assigned to the shortlisted models, based
on whether their average metric values fall within the specified cutoff values (refer to Ta-
ble 8). Cutoff values for path smoothness, speed deviation, and travel time are determined
by using the 3σ rule, adding three standard deviations to the mean values observed during
the experiments, while the cutoff values for overlap and oscillation metrics are set at 10%
and 0.005, respectively, due to no observed values for these metrics during experiments.

Normalized success score for a model is derived by counting the number of ✓ it re-
ceives (refer to Table 9). The results after the two-stage process show that UPL yields
the best outcomes among the five force-based models, followed by CFMc and CFMe.
However, the final scores of UPL, CFMc and CFMe are separated by < 10%, suggesting
that they yield comparable predictions for the situations considered here. It is important
to recognize the significance of the first stage of shortlisting. If scoring had been di-
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Table 9 A model’s score for final evaluation is calculated by counting the number of ✓ it receives in Table
8. The evaluation process highlights that UPL shows the best results among the five force-based
models, followed by CFMc and CFMe, while SFMc and SFMe are ‘Not Eligible (NE)’ from
Stage I.

Models ✓ × SCORE

UPL 20 15 20/35 = 57.14%

CFMc 19 16 19/35 = 54.29%

CFMe 17 18 17/35 = 48.57%

SFMc - - NE

SFMe - - NE

rectly applied to all models, SFMc would have received the highest score despite failing
to achieve 80% successful trajectories for all the setups, including the simplest SOSP sce-
nario. However, our analysis also indicates the failure of all models for the higher-density
MOSP scenarios.

5 Conclusions

Thus in this study, we have provided a comprehensive scoring system designed to evalu-
ate pedestrian dynamics models for commonly occurring situations involving moderate-
to-low pedestrian density (with large obstacle density for some cases). Towards this, we
have selected four common situations and performed experiments with volunteers span-
ning age groups and gender. The experimental results serve as a baseline to develop a
two-stage evaluation process including eligibility criteria and scoring. We provide a de-
tailed evaluation of five force-based models by mimicking experimental scenarios using
exact initial and final conditions. Our overall observations from the experiments are sum-
marized below.

• SOSP: SFMc fails to produce 80% successful trajectories and shows high overlap.
SFMe passes the eligibility but demonstrates abrupt path changes, significant speed
deviations, and longer travel times. UPL results in sudden path changes but minimal
speed deviation, while CFMc and CFMe exhibit high speed deviations but low path
direction changes. Nearly all models show a significant decrease in speed as the
pedestrian approaches the obstacle.

• Head-On: Both SFMc and SFMe fail to achieve 80% success rates. CFMe shows
some unsuccessful trajectories, whereas UPL and CFMc have none. CFMe also
shows abrupt path changes, significant speed deviations, and increased travel times.
UPL resulted in sudden path change but minimal speed deviation, whereas CFMc
shows high speed deviation but low change in path direction.
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• Parallel-Ped: SFMc fails to reach an 80% success rate and has high overlap, while
all other models show 100% success. UPL causes sudden path changes with mini-
mal speed deviations, whereas the remaining models display high speed deviations
with low path direction changes. In experiments, the faster pedestrian overtakes the
slower one, without any significant change in the dynamics of the slower one. For
all models except UPL, the faster pedestrian couldn’t overtake the slower one. UPL
predicts an overtake but with a significant path change of B which is not observed
in experiments.

• MOSP: With increasing obstacle density, all models showed higher proportions
of unsuccessful trajectories, greater path complexity, speed deviations, and longer
travel times, although these effects depend on specific obstacle configurations and
pedestrian positions. Both SFMc and SFMe fail to achieve 80% success in nearly all
cases, while other models perform relatively better. UPL exhibits backward motion
and abrupt path changes, whereas CFMc and CFMe have sudden path changes and
high speed deviations.

Here, we note that nearly all models fail for MOSP situations with a large number of
obstacles (14.96%). This is a highly common scenario in India, where one needs to nav-
igate through moderately crowded public spaces (even simple corridors with a moderate
density of standing people). While it is true that parameter tuning (e.g., adjusting k and τ0
in the case of UPL) can influence model behavior, our additional analysis (see Figure E-8
in Supplementary material) demonstrates that even significant variations (up to tenfold
changes) in these parameters do not substantially improve the model’s performance in the
tested scenarios. This supports the article’s focus on addressing deeper structural issues
in the models, rather than parameter sensitivity alone.

Next, we finalize our evaluation by a two-stage process explained in Tables 7, 8, and 9.
Overall, the UPL [1] emerged as the most successful in our scoring system, which might
provide decent predictions in the most common situations, closely followed by CFMc and
CFMe.

Note that, while we state that UPL performs well relative to other models, notable lim-
itations are visible within this study. In particular, UPL consistently demonstrates sudden
changes in the pedestrian path across all scenarios, which indicates the unrealistic feature
for collision avoidance. In SOSP, UPL predicts a slowdown of the pedestrian as it ap-
proaches the obstacle. For Parallel-Ped scenarios, UPL predicts a path change of B (and
subsequent overtake of A), which contrasts experiments. Furthermore, in the multiple
obstacle scenario (MOSP), UPL exhibits noticeable oscillations, suggesting an unrealis-
tic fluctuation in pedestrian movement when navigating around obstacles. Additionally,
UPL predicts increasingly unsuccessful trajectories for higher obstacle densities in MOSP
situations. These features imply difficulties in accurately replicating the decision-making
process and adaptive behaviors observed in real-life pedestrian dynamics. Thus even
though UPL provides the most reasonable predictions in most scenarios, it shows signif-
icant limitations that need to be corrected. To the best of our knowledge, no other study
has compared all these models for such commonly occurring situations. Thus, this study
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will help future researchers in the selection of appropriate pedestrian models for a given
scenario.

6 Supplementary Material

The supplementary material offers further insights to enhance the findings discussed in the
main manuscript. While the main text sets a benchmark for pedestrian dynamics models
in common scenarios, the supplementary section addresses several key aspects: the de-
termination of the time step size used in simulations, the unrealistic outcomes produced
by models in the MOSP scenario, parameter selection for the Social Force Model (SFM),
and additional trajectory data for the SOSP scenario.
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