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Abstract Pedestrian dynamics is concerned with understanding the movement patterns
that arise in places where more than one person walks. Relating theoretical models to
data is a crucial goal of research in this field. Statistical model fitting and model selection
are a suitable approach to this problem and here we review the concepts and literature
related to this methodology in the context of pedestrian dynamics. The central tenet of
statistical modelling is to describe the relationship between different variables by using
probability distributions. Rather than providing a critique of existing methodology or a
“how to” guide for such an established research technique, our review aims to highlight
broad concepts, different uses, best practices, challenges and opportunities with a fo-
cussed view on theoretical models for pedestrian behaviour. This contribution is aimed at
researchers in pedestrian dynamics who want to carefully analyse data, relate a theoretical
model to data, or compare the relative quality of several theoretical models. The survey
of the literature we present provides many methodological starting points and we suggest
that the particular challenges to statistical modelling in pedestrian dynamics make this an
inherently interesting field of research.

Keywords Pedestrian dynamics · collective behaviour · statistical modelling · statistics

1 Introduction

One of the transformative developments in the study of pedestrian dynamics has been the
development and application of mathematical and computational models. Research into
pedestrian dynamics is inherently multidisciplinary and concerned with understanding the
movement patterns that arise in places where more than one person walks. Understanding
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Figure 1 Number of annual publications on pedestrian dynamics models, estimated by performing an
online search with the search engine Google Scholar using the search terms indicated in the
figure legend (https://scholar.google.co.uk/; accessed 26 October 2018). Words
in brackets indicate that the entire expression has to appear in the publication.

how individual walking behaviour leads to larger-scale dynamics is not only an interest-
ing fundamental research question, but also has direct applications in building design,
event planning and traffic management, for example. It is therefore not surprising that
when theoretical models were developed to explain and possibly even predict pedestrian
behaviour at an individual or aggregated level, they quickly became very successful and
popular tools in research and industry [1–3]. Estimates of the number of publications on
pedestrian dynamics models can serve as an indication for the extent of this success (see
Fig. 1; an alternative perspective on the literature shows similar qualitative trends [4]).

An additional and equally transformative development in the field of pedestrian dynam-
ics has been the increase in observational and experimental data that is being recorded in
research [5] and industry (unfortunately most data in industry is not published at present).
In analogy to other quantitative research domains, the increased use of theoretical models
and data in pedestrian dynamics research raises two fundamental questions that we focus
on here:

Question 1: How and to what extent is it possible to infer the behavioural mechanisms
underlying pedestrian dynamics from data?

Question 2: There are many theoretical models for pedestrian dynamics. How can
we rigorously compare different models to decide which ones are most appropriate in
different scenarios?

Statistical modelling, the subject of this review, is one available methodological frame-
work for approaching these questions. Statistics is a well-established discipline and many
textbooks, literature reviews and journals are available to inform the use of statistical
modelling across research fields. So why is there a need for a review on statistical model

https://scholar.google.co.uk/
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fitting and model selection specifically for pedestrian dynamics? We decided to write
this review for two main reasons. First, we suggest there are many opportunities for an
increased use of carefully applied statistics in pedestrian dynamics research and with this
review we hope to highlight some of these opportunities. By working towards addressing
the two questions above, statistical modelling can help to consolidate the experimental
and theoretical advances in the field. Second, in our opinion pedestrian dynamics is an
intrinsically interesting application domain for statistical modelling. The fact that the ob-
served behaviour of pedestrians often arises from interactions between individuals, such
as avoiding collisions or attempting to stay close to friends, presents interesting challenges
for statistical analysis and modelling that we will discuss below.

The purpose of this review is neither to present an exhaustive list and critique of statis-
tical approaches, nor is it a detailed “how to” guide for statistical modelling in pedestrian
dynamics. We attempt to cover the relevant literature but we do not claim to have found all
relevant work. Simple descriptive methods and measures, some of them rooted in statis-
tics, are frequently used in pedestrian dynamics research. We deliberately exclude these
from our discussion to focus on reviewing key statistical modelling techniques adopted
in the field and possible pitfalls in their use. We present our view on this topic, founded
in the literature, and hope this is a useful starting point for an increased use of statistical
modelling in pedestrian dynamics research.

The remainder of this review is structured into seven parts. In the four following sec-
tions, sections 2-5, we set the scene by introducing relevant methodological background
in general terms. This includes a discussion of statistical model fitting (section 2) and
model selection (section 3) in the context of pedestrian dynamics and a categorisation
of the possible uses of this methodological framework (section 4). In the last section of
the background we outline typical steps in statistical modelling in an attempt to start a
discussion on best practices (section 5). Section 6 contains a survey of previous work in
statistical model fitting and model selection in pedestrian dynamics. We hope that this
section is a useful reference point for researchers wishing to develop their own statistical
models. Before summarising and discussing the current state of the art in section 8, we
highlight several common pitfalls in statistical modelling in section 7.

2 Statistical model fitting and pedestrian dynamics

An informal description of statistical models is that they describe the relationship between
different variables, typically measured from data, by using probability distributions. This
use of probability distributions is what distinguishes statistical models from other math-
ematical models. It means that we can use statistical models to make probabilistic state-
ments about the processes or data they describe, expressing our certainty for outcomes.
When formulating statistical models, we make assumptions related to the probability dis-
tributions inherent in them. Similarly, the process of fitting statistical models to data, or
deciding on values for model parameters given data, is informed by the probabilistic na-
ture of the models and requires assumptions on the statistical properties of the data used.
This conceptual framework is very flexible and there are many different approaches for
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fitting statistical models. Before discussing the particular challenges for statistical model
fitting in pedestrian dynamics, we will illustrate some of the key concepts in examples.
Throughout this review, we will only consider statistical models that go beyond standard
statistical tests that assess hypotheses about populations means or distributions, such as
the T-test, Chi-squared, Kolmogorov-Smirnov test, Wilcoxon signed-rank test, Fisher’s
exact test, Bootstrapping to name but a few.

In the first example, we consider the scenario depicted in Fig. 2: pedestrians are queu-
ing in front of a narrow bottleneck and pass through it, one after the other. A key quantity
in this context is the time gap, ∆t, between consecutive pedestrians passing through the
bottleneck. It relates to the flow of pedestrians, but variations in ∆t could also tell us about
temporary interruptions of the flow that could be caused by competitive behaviour in front
of the bottleneck, for example. To study the dynamics of this system, we can develop a
statistical model for the quantity ∆t [6,7]. Based on the distribution of ∆t observed in data,
a Gamma distribution is a plausible distribution to use in a statistical model. A statistical
model could thus assume that observed time gaps ∆ti, where the index i indicates the time
of observation, follow a Gamma distribution with mean µi and variance σ and thus take
the general form:

∆ti ∼ Γ(µi,σ) (1)

Importantly, in this formulation, the mean µi does not have to be a constant model pa-
rameter, but can depend on the relative positions and movement of pedestrians in front of
the exit. For example, we could assume that the time gap depends on the distance of the
closest person B to the exit, dB, and on the difference in distance between the two closest
pedestrians to the exit, dC−dB (see Fig. 2). The expression for µi in our model could then
be:

µi = β0 +β1dB +β2(dC−dB), (2)

where β0,β1 and β2 are model parameters and dB and dC will vary over time. Other
model formulations are possible and very useful for studying the scenario in more detail,
as discussed below.

One approach of fitting such models makes use of the Likelihood function, L(θ). L(θ)
is a function of model parameters θ and it describes the plausibility of parameter values
for the model to describe observed data, for given data. Parameter values associated with
higher values of L are therefore preferred. In Maximum Likelihood Estimation (MLE),
statistical models are fitted to data by selecting parameter values that maximise the Like-
lihood function L. When possible, the parameters that maximise L can be found analyt-
ically, but very often this optimisation is performed numerically (examples in pedestrian
dynamics are [6, 8–16]).

An alternative approach to Maximum Likelihood Estimation derives from Bayesian
statistics and it combines the Likelihood function with prior knowledge about the param-
eters (prior distribution) to obtain information about likely parameter values (posterior
distributions) and model fit (e.g. Marginal Likelihood; [13]).

For the example on time gaps introduced above, if we define fΓ(∆ti; µi,σ) to be the
probability density function of a Gamma distribution with mean µi and variance σ evalu-
ated at ∆ti. Then under some assumptions detailed below the likelihood, L, of the statis-
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Figure 2 Example for a statistical model used to investigate pedestrian dynamics at bottlenecks [6, 7].
The left-hand panel shows a still image from an experiment with volunteers. The statistical
model describes the time gap between consecutive pedestrians that pass through the bottleneck.
In the right-hand panel, individual A has just entered the bottleneck. The model assumes that
the time gap until the next pedestrian (B, C, or D) enters the bottleneck comes from a Gamma
distribution, similar to the one shown, with mean dependent on the dynamics and positioning of
pedestrians in front of the bottleneck. For example, a simple model assumes that the mean of
the time-gap distribution is the distance of the closest pedestrian to the exit (dB here).

tical model described above is the product of the probability densities over all observed
time gaps:

L = ∏
i

fΓ(∆ti; µi,σ) (3)

Since µi depends on model parameters, L is a function of the model parameters in Eq. 3.
Importantly, when formulating the Likelihood as in Eq. 3, we make the assumption

that the different observed data points are conditionally independent. For our example,
this means that we assume our model captures any correlations or dependencies between
consecutive or indeed between any ∆ti and ∆t j. This assumption means we can compute
the Likelihood as a product over the probability densities associates with each ∆ti. In the
context of pedestrian dynamics, this assumption creates particularly interesting challenges
that we will discuss further below. Authors concerned that such assumptions underlying
statistical models do not hold, sometimes use a pseudo-likelihood approach to fit their
models, effectively acknowledging that some of the model assumptions may be violated
(e.g. [17]). The Likelihood concept does not rely on conditional independence. In prin-
ciple, Likelihoods can be formulated differently, such as L = f ({∆ti}i;{µi}i,σ), where f
is a probability density function that simultaneously accounts for the set of all data points
{∆ti}i, taking any spatio-temporal dependencies into account. However, in practice it is
difficult to formulate Likelihood functions in this way and none of the examples from the
pedestrian dynamics literature we discuss below takes this alternative approach to making
independence assumptions.

Statistical models can be used to describe the full range of scenarios typical in pedes-
trian dynamics, ranging from models that describe the probability for individuals to select
one from a set of discrete options, such as exit doors (Fig. 3(A)), to models that describe
the movement path of individuals using multivariate probability distributions to express
probabilities for positions in two or more dimensions (Fig. 3(B)). While the former sce-
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Figure 3 Examples for statistical modelling scenarios typical for pedestrian dynamics. In panel A, a
statistical model is used to describe the exit choice of individuals. Consider the pedestrian
highlighted in grey and with an asterisk, *. For example, a statistical model could express
the probability of this individual to choose one of the exits, labelled (i)-(iv), based on how
far away or busy they are (e.g. via Multinomial logistic regression). In panel B, a statistical
model describes the location a pedestrian moves to within a fixed time interval. For example,
the model may predict a probability distribution, shown in colour, for the location of a focal
individual (highlighted in grey and with an asterisk), based on the location of the individual and
other pedestrians nearby. Arrows indicate the actual pedestrian movement that may be observed.

nario can be investigated using statistical models with clearly defined likelihood functions
(e.g. [10–12, 14, 15, 18]), models for the latter scenario often have to make simplifying
assumptions to formulate a likelihood function (e.g. [9, 16]) or, alternatively, use tech-
niques that replace an explicit Likelihood function with many simulations of models, also
called Likelihood-free methods (e.g. [19]). A list of commonly used statistical model
fitting approaches alongside references for their use in pedestrian dynamics can be found
in Tab. 1.

At a glance, statistical model fitting, MLE in particular, appears to be similar to other
approaches that define an objective function which measures the similarity between data

Statistical model fitting technique References (examples)

Maximum Likelihood estimation (analytical) [20, 21]
Maximum Likelihood estimation (numerical) [6, 8–16]
Pseudo-likelihood (numerical) [17]
Bayesian analysis (with Likelihood function) [13]
Bayesian analysis (Likelihood-free) [19, 22]

Table 1 List of model fitting techniques alongside references for their use in pedestrian dynamics.
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and model and calibrate models by determining parameter values that optimise the val-
ues of this function (e.g. [23, 24]). An example for such an objective function is the
sum of the squared difference between the model predictions and the data for all observa-
tions (incidentally, minimising this function is identical to MLE for a class of statistical
models assuming Normal error distributions). However, there are two important differ-
ences. First, statistical model formulation and fitting requires explicit assumptions about
the use of probability distributions to describe the relationship between observed vari-
ables. Assessing the validity of these assumptions for fitted models is often possible and
thus facilitates checking the appropriateness of models directly (see Sec. 4.3; Likelihood-
free methods are an exception). Second, as already mentioned above, the formulation of
statistical models facilitates probabilistic statements about data, but also about parameters
estimates (e.g. hypothesis tests on parameter values) and comparisons between models
(see Sec. 3). In this sense, statistical model fitting is a form of model calibration that
offers an established framework for additional analysis and model checking.

As already indicated above, the pedestrian dynamics context presents specific chal-
lenges to performing statistical model fitting. The underlying reason for this is that pedes-
trian dynamics is concerned with the movement dynamics arising over time from the in-
teractions between multiple pedestrians, as well as interactions of pedestrians with the
environment. This means that there are both temporal dependencies (e.g. the next step of
a pedestrian may depend on previous steps) and spatial dependencies (e.g. the movement
of one pedestrian depends on movement of other pedestrians nearby) in most pedestrian
dynamics contexts (e.g. [17]). The challenge for statistical modelling in pedestrian dy-
namics is to formulate models that describe meaningful aspects of the dynamics, but can
ideally still be expressed in terms of sensible probability distributions. In addition, the
variables modelled and the model description should preferably ensure that it is possible
to formulate a Likelihood function which typically requires that conditional independence
of modelled data points holds. This can be challenging. For example, consider statisti-
cal models describing the movement of multiple pedestrians in two dimensions. This
would require formulating joint, multi-variate distributions describing the movement of
all individuals over time. Approaches specifying probability distributions separately for
individuals would have to ensure all spatial and temporal dependencies are accounted for
for each individual.

A further issue arises from the observation that pedestrian behaviour can change over
time. This can be seen clearly in simple experiments, such as the one on pedestrians
walking through a bottleneck discussed above. At the start of such experiments, pedestri-
ans might rush to get through the bottleneck first, before settling into unhurried queuing
behaviour that can turn into deliberately waiting towards the end of experiments to avoid
standing in a crowd. Such intrinsic changes in behaviour or changes in behaviour caused
by extraneous effects that may not be known or considered in an analysis lead to non-
stationary time series of pedestrian behaviour observations. If unaccounted in statistical
models, the non-stationarity of time series mean any independence assumptions in Like-
lihood functions are not valid (see Sec. 4.3 for an example).

One approach to these problem is to use Likelihood-free methods that avoid the prob-
lem of having to specify the relationship between variables in terms of probability distri-
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butions (e.g. [19,22]). However, such approaches are typically computationally expensive
and importantly they do not lend themselves to model checking and hypothesis testing in
the same way as other statistical model fitting approaches do [19, 22]. Another approach
is to select variables of interest for modelling statistically, such as the decision between
discrete options (e.g. exit routes; see [10–12, 14, 15, 18]), or time gaps between pedestri-
ans passing through a bottleneck, as discussed above [6, 7]. However, such approaches
do not guarantee that issues of temporal or spatial dependencies are avoided and they in-
evitably describe a selection of the dynamics. To avoid the issue of non-stationary time
series, data from time intervals for which the behaviour or system dynamics are stationary
could be selected using stationary state detection methods (e.g. [25]). However, this risks
discounting highly informative data. Alternative methods to account for auto-correlations
in data exist, such as re-sampling techniques or generalised least squares, but their use
limits the applicability of standard statistical techniques for model fitting or inference.
Despite different approaches, there is no clear solution to this problem to date, which
means pedestrian dynamics remains an interesting domain for formulating and fitting sta-
tistical models.

In an approach somewhat different to statistical modelling, the variability in data or
model simulations is studied using statistical techniques. Rather than relating models that
incorporate distributional assumptions directly to data via statistical model fitting, this
approach analyses the variability in empirical data or model simulations separately. For
example, this can be used to assess if a deterministic modelling approach that only cap-
tures average dynamics without any variability is appropriate given observed variability in
data [26]. Other examples for this work assess how many replicate simulations of models
that include variability have to be performed to ensure the convergence of average dynam-
ics and variability in dynamics [27–29]. However, as this work is not directly concerned
with statistical modelling, we will not discuss it further here.

3 Statistical model selection and pedestrian dynamics

Statistical model selection is the process of selecting a statistical model from a set of
candidate models [30, 31]. For example, considering the statistical model for time gaps
between pedestrians passing through a bottleneck discussed above, we may wish to for-
mally compare the model specified in Eq. 2 with a much simpler model that assumes time
gaps have a constant mean: µi = β0. Note that such a model would suggest that time gaps
do not depend on the dynamics in front of the bottleneck and it would assume that the en-
tire system is stationary meaning that pedestrians arrive and leave at a constant rate over
time – assumptions which are unlikely to hold. Provided theoretical models in pedestrian
dynamics can be considered within a statistical modelling framework, statistical model
selection is a process that directly addresses the second main question posed in the intro-
duction (how to rigorously compare models). More broadly, it relates to a key aspect of
the knowledge generation process using theoretical models. Different theoretical models
can be viewed as formalising different hypotheses for the mechanisms underlying a sys-
tem. Statistical model selection is thus one approach for deciding which one of a number
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of competing hypotheses is the most plausible, given observed data.
Statistical model selection is not a single generally applicable and valid methodology.

Instead, this process aims to balance two main guiding principles and there is a range of
techniques available to formally compare models. The guiding principles for statistical
model selection are first, how well a model captures data and second, how simple a model
is, typically measured in terms of the number of free model parameters. The first principle
requires little explanation, as it is evidently desirable that models explain data well or that
the fit of models to data is good. The second principle is based on a concept widely
accepted as part of the scientific method known as Occam’s razor or the principle of
parsimony which states that simpler models or hypotheses are preferable [32, 33]. This
includes avoiding overfitting, which occurs when overly complex models are used. An
extreme example for overfitting is the case of a model that has as many parameters as
there are data points. Such a model captures the data very well, but is meaningless in
terms of describing or measuring general trends in the data.

It should be noted that although simpler models are preferred, the other extreme, overly
simplistic or reductionist models should also be avoided (see e.g. [34] for a discussion).

Different approaches and corresponding techniques can be used to perform model se-
lection and a list of commonly used methods is included in Tab. 2. We will briefly demon-
strate these different approaches with reference to examples for their use in pedestrian
dynamics research.

One approach that can be used to exclude models from a set of candidate models is to
demonstrate that the assumptions underlying these models, mentioned in Sec. 2, can be
demonstrated not to be valid. We will re-visit and demonstrate this concept below using
an example from the pedestrian dynamics literature (Sec. 4.3; [6]).

Another approach for model selection is based on examining if different components
of models substantially add to explaining the data. In practice, this is achieved by per-
forming hypothesis tests on individual model parameters or groups of parameters. The
tests typically compute probabilities for null hypotheses which state that a parameter is
equal to zero or that the maximum value of the Likelihood does not improve substantially
if parameters are added to a model (see hypothesis tests for single or multiple parameters
in Tab. 2). In this way nested models, i.e. a set of models where simpler models are
contained within more complex models, can be compared. An example for this is the use
of nested statistical models to establish that the presence of simulated social groups is
unlikely to have an effect on time gaps between consecutive pedestrians passing through
a narrow bottleneck in an experiment [7]. A different study uses a similar conceptual ap-
proach to compare nested models for microscopic pedestrian movement and suggests that
finite reaction times help to explain walking behaviour [9]. More generally, the approach
and technique of testing hypotheses on model parameters is used very widely to establish
trends in data, as further discussed in Sec. 4.1.

To compare models that are not nested, more general measures for the relative quality
of models can be used. These are often based on the estimated maximal value of the
Likelihood and more sophisticated measures explicitly or implicitly penalise models with
more parameters (e.g. AIC, BIC, Bayes Factor in Tab. 2). A range of studies employ
this approach. For example, a comparison of non-spatial models using Bayes factors
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Use Examples for methods

Hypothesis tests for single parameters T-test, Likelihood-ratio test
Hypothesis tests for several parameters F-test, Likelihood-ratio test
Measures for relative quality of models R2, Likelihood, AIC, BIC, Bayes Factor

Table 2 List of model selection techniques. The T-test, F-test and R2 are based on the squared differ-
ence between model fit and data, whereas the remaining methods are based on the Likelihood
of models. Details can be found in any comprehensive statistics textbook (e.g. [30, 31]). Note
that none of these techniques are informative about the correctness of a model (see model check-
ing, Sec. 4.3). Note also that some methods make specific assumptions and are not generally
applicable for all statistical models.

suggests when and how crossing pedestrian streams at four-way intersections interact
[22] and a model comparison using the Akaike Information Criterion (AIC) suggests that
a macroscopic model for multi-directional, time-varying and congested pedestrian flows
outperforms simpler models that do not consider anisotropic pedestrian walking speeds
[17]. More examples for applications of these model selection approaches in pedestrian
dynamics can be found in Sec. 6.

It is worthwhile to briefly contrast statistical model selection to a different model se-
lection approach frequently used in machine learning. In this approach a given data set is
divided into a training and a test set that are used to first calibrate models and subsequently
assess its goodness of fit (examples in pedestrian dynamics include [35–37]). Repeating
this procedure multiple times using cross-validation approaches helps to prevent overfit-
ting. In contrast to statistical model selection techniques, measures of model quality based
on this approach do not immediately lend themselves to making probabilistic statements
relating to model parameters or the relative quality of models.

This discussion indicates that statistical model fitting is already widely and successfully
used in pedestrian dynamics research (see also Sec. 6). A particular feature of pedestrian
dynamics research are the close links between industry and research which means that
theoretical innovations may be of direct interest for use in real-world applications, such
as crowd simulators that are used in fire safety planning [38,39]. Efforts to systematically
contrast theoretical models that could be or are already used in industry are being made
(e.g. [38, 39] and beyond academia1,2), and we suggest that statistical model selection
could usefully contribute to such undertakings.

1e.g. the registered association RiMEA, see https://rimea.de/, accessed 16/01/2019.
2in addition, the ISO (International Standards Organization) has built a Task Group within the Fire

Safety Engineering sub-committee (TC92/SC4 technical comittee 92, Sub-Committe 4 https://
www.iso.org/committee/50552.html, accessed 08/02/2019) with the scope of developing
a standard document for the verification and validation of pedestrian evacuation models used for fire
safety engineering applications in buildings

https://rimea.de/
https://www.iso.org/committee/50552.html
https://www.iso.org/committee/50552.html
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4 Uses for statistical model fitting and selection

Statistical model fitting and selection can be used to inform different aspects of research
that relates theoretical models to data. There are three main categories for uses that we
will discuss in turn in this section: inference, prediction and model checking.

4.1 Inference

By far the most common use in pedestrian dynamics research of statistical model fitting
and selection is inference, the process of inferring information from data and testing as-
sumptions about data. This process directly links with the first main question posed in the
introduction. To many authors, the process of inference is synonymous to statistical anal-
ysis. However, as we do not include standard statistical tests in this review, the process
of inference we refer to here seeks to find models that explain phenomena at a conceptual
level by assessing dependencies between observed variables. These models are thus often
called explanatory models [40].

Typical examples in pedestrian dynamics research include using statistical models to
test which out of a selection of observed factors influence decision-making in pedestrians
(e.g. [10–12, 14, 15, 18]), or which out of a set of hypotheses (models) for pedestrian
movement is the most plausible given data (e.g. [9, 16, 17, 22]).

Statistical models that are used for inference in pedestrian dynamics are typically de-
rived systematically from anecdotally observed or hypothesised behavioural mechanisms.
For example, observations may indicate that pedestrians follow others or that they avoid
queues. These observations can be formalised and subsequently tested in statistical mod-
els for pedestrian route choice (e.g. [10–12, 15]). Inference using these models aims to
ideally uncover causal relationships between variables (e.g. longer queues at an exit lead
to a reduced probability of pedestrians choosing it). However, uncovering such causal
relationships from data is only possible, if an inferential analysis is combined with a care-
ful experimental design that exposes pedestrians to a representative and relevant range
of situations whilst keeping other factors external or internal to pedestrians constant (see
also Sec. 5). If this is not given, inferential analysis is still useful, as it can be used to
detect and formally test correlations between variables. For example, pedestrians may
take queue lengths into account when choosing exits, but their decisions could also be
explained by other factors, such as signage, lighting or the movement of people they are
related to that may not have been measured and are thus not included in statistical models.

Statistical models that are designed for inference may successfully uncover dependen-
cies between variables in data, but this does not directly imply that they will also be useful
for predicting future outcomes [40]. To give an example, a statistical model may help to
test a hypothesised relationship between pedestrian route choice and the crowdedness of
routes. However, this does not necessarily mean that the model will also be able to suc-
cessfully predict route choices of individuals. It may have been designed with a strong
emphasis on contrasting responses to crowdedness and failed to incorporate other factors
influential for individuals’ route selection, including internal factors, such as stress lev-
els or personal preferences. This indicates the differences in purpose between statistical
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models designed for inference and models designed for another use, namely prediction.

4.2 Prediction

Statistical model fitting and selection can also be used to produce predictions for future
behaviour that can be measured. Models developed for this purpose are often called
predictive models [40]. In contrast to inference, prediction does not necessarily require
or aim at an understanding of the system modelled. Statistical models used for prediction
can be derived entirely from data, rather than being informed by theory or hypothesised
relationships between variables. Fitting such models and selecting between candidate
models emphasises predictive success. In practice, this can mean authors de-emphasise
the importance of ensuring that model assumptions hold (e.g. relating to the probability
distributions used or conditional independence). In short, when it comes to this use of
theoretical models, the distinction between statistical modelling and the wider field of
machine learning can become blurred.

We are not aware of examples in pedestrian dynamics research that employ statistical
model fitting and selection specifically for the purpose of prediction. Some studies fit and
select statistical models and subsequently explore their predictive potential (e.g. [7,11,12,
22]). Other studies employ machine learning techniques for prediction and do not view
these through a statistical modelling perspective [36, 37, 41, 42]. For example, one study
uses multi-agent reinforcement learning to train the behaviour for individual agents and
subsequently shows that this behaviour can be scaled up to predict emergent collective
behaviour in larger crowds without the need for further training [42]. A different example
illustrates the potential of supervised machine learning to learn a simpler model from
simulations of a microscopic model that can subsequently be used in an iterative search
for optimal solutions for simple pedestrian transport problems, thus demonstrating that
the behaviour of the microscopic model is predicted sufficiently accurately [41].

Other models in pedestrian dynamics, such as simulators for the movement of pedes-
trian crowds, are regularly used to make predictions (e.g. in industry, see [3, 38, 39]).
Although some of these models make use of data and model fitting to inform their core
functionalities, they are typically not formulated as statistical models in their entirety and
the complete models are certainly not calibrated and assessed using statistical model fit-
ting and selection.

The processes of inference and prediction are not mutually exclusive and it is therefore
possible and even desirable that a statistical model developed for one purpose can also
be useful for the other purpose. In the discussion in Sec. 4.1 and this section, we aim to
indicate that it is possible to employ statistical models in pedestrian dynamics for different
purposes and that this can lead to differences in the emphasis on aspects in statistical
model fitting and model selection that are considered. The difference between statistical
analysis for predictive or for inferential (explanatory) purposes has also been discussed
more thoroughly elsewhere [40].
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4.3 Model checking

An entirely different use of statistical model fitting in pedestrian dynamics is to validate
the appropriateness of models. This type of model checking makes use of the fact that
statistical model fitting often requires explicit assumptions relating to the probability dis-
tribution of data and the conditional independence of data points (see Sec. 2). These as-
sumptions can be tested explicitly and therefore present a convenient approach for model
validation.

A flexible way to assess the assumptions underlying statistical models is to consider
residuals, measures for the difference between observed values and values estimated by
the fitted model. Depending on the distributional assumptions of a model, the distribution
of residuals is expected to show particular properties. There are many different ways to
compute and to investigate residuals that are firmly established [30, 31]. For example,
model assumptions often imply that the residuals follow a particular distribution, such as
the Normal distribution, and in this case a Kolmogorov-Smirnov test can be used to assess
if this assumption holds. To give a more detailed example, we demonstrate some of the
general principles using an example from pedestrian dynamics [6]. Recall the statistical
model for time gaps between consecutive pedestrians passing through a narrow bottle-
neck introduced in Sec. 2. Fig. 4 shows plots of the deviance residuals obtained when
fitting such a model to experimental data and to data simulated using a computational
model for pedestrian movement (deviance residuals depend on the likelihood of the fitted
model [31]; the computational model assumes forces acting between individuals and is
based on [43], known as the “social force model”). One popular and often appropriate
way of assessing model assumptions is to plot residuals against the values predicted by
the model (Fig. 4(A, B)). We would expect that the mean of the residuals is approximately
constant and does not depend on the size of the predicted values (as appears to be the case
in Fig. 4(A, B)). Trends in residual mean would indicate that the model does not cap-
ture important variation in the data. Another residual plot that is particularly relevant for
time series data, is a plot of residuals over time. Changes in the mean of residuals over
time, could be indicative of auto-correlations in data that are not captured by the model,
meaning that the assumption of conditional independence does not hold. Such trends in
residuals indicate that models fail to account for non-stationarity in the time series data.
In Fig. 4(D) the mean of residuals increases towards the end of simulations. This suggests
that the statistical model used is not appropriate for this data. Moreover, as this issue does
not occur when fitting the same statistical model to experimental data (Fig. 4(C)), it could
even be suggested that the computational model used for the simulations produces differ-
ent movement dynamics to those observed in the experiment (see [6] for details). This
example indicates how residuals can be used to assess model assumptions and therefore
learn about the appropriateness of statistical models.

An alternative indicator that can be used in model checking relates to model parame-
ters. Statistical model fitting provides information on model parameter estimates, either
relating to errors associated with the estimates, or in Bayesian analysis by producing
a posterior probability distribution indicating how likely different parameter values are
given data and prior knowledge. This information can be used to assess if models can be
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Figure 4 Example for statistical model checking using residuals (redrawn from [6]). A and B show de-
viance residuals versus predicted values for an experimental data set (A) and a simulated data
set (B). C and D show deviance residuals plotted as a time series for experimental and simulated
data, respectively (the residual index is incremented over time). Grey vertical lines indicate the
start of a new experimental run under the same conditions (C) or the start of a new crowd sim-
ulation (D). The red lines in A and B are spline fits to the residual time series that emphasise
overall trends visible.

calibrated successfully. For example, posterior parameter distributions can indicate that
a large degree of uncertainty about parameters remains after model fitting and thus cast
doubt over whether a model is appropriate for a given data set (e.g. a large variance or
multi-modality in posterior distributions [19, 22]).

Either of these approaches to model checking are useful for single models, but can also
be used in model selection to deselect models that are demonstrably not appropriate.

In summary, in this section we discuss three uses for statistical model fitting: inference,
prediction and model checking, providing examples of each in recent literature. Before
presenting a more comprehensive survey of relevant work in pedestrian dynamics, we will
briefly discuss typical steps in statistical modelling with the intention to start a discussion
on best practice for statistical modelling in pedestrian dynamics research.

5 Typical steps in statistical modelling

This section contains a brief summary of typical steps in analysis involving statistical
modelling. A list of typical steps can be found in Tab. 3. Depending on the intended use
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of statistical models, it may not be necessary to perform all of these steps and the order in
which they are performed can also vary.

(i) Data collection. Ideally a statistical modelling analysis already informs data col-
lection. For an inferential use of statistical models, it can be useful to carefully design
controlled experiments to ensure the aspects of interest are covered comprehensively and
in an unbiased way by the data collected and that enough data is collected to make the de-
sired inferences [30,31,40]. In particular, “power analysis” methods allow experimenters
to compute required sample sizes relative to expected effect sizes and desired confidence
levels [30, 31]. Examples for such experimental design in pedestrian dynamics studies
include [13–15,44,45]. For predictive modelling, as discussed in Sec. 4.2, it may be more
important to focus on collecting a large enough quantity of data, to ensure out-of-sample
testing can be performed adequately (e.g. splitting data into training and test sets and
performing cross-validation).

(ii) Exploratory analysis of data. An exploratory analysis of raw data is good practice
whenever data is analysed. In statistical modelling, this can help to develop hypotheses
for dependencies between variables for inferential modelling, it can highlight outliers in
the data that may affect subsequent analysis and it can help to identify biases in the data
collection (e.g. automated observational data collection only functioned properly during
the day, but not at night). These are just a few examples for why an exploratory analysis
is useful and more examples can be found in any comprehensive textbook on statistical
modelling (e.g. [30, 31]).

(iii) Decide on candidate models. This step is concerned with the formulation of the
theoretical models that are to be analysed. In inferential uses of statistical modelling, this
may involve deciding on the variables that should be included in a model (e.g. [18]) or
deciding on a number of candidate models based on theoretical considerations (e.g. [22]).
It could also include fundamental decisions on modelling approaches relating to distri-
butional assumptions or a choice between classical statistical models and computational
models with less concrete distributional assumptions. For prediction, different models
may be selected because of their known distinct properties or to demonstrate the superi-
ority of a novel model over existing ones (e.g. [35], although this study is closer in spirit
to machine learning rather than statistical modelling).

(iv) Model fitting. This process is a crucial part of any statistical modelling analysis
and has already been discussed in Sec. 2.

(v) Model selection. The relevance and importance of this step has already been cov-
ered above in Sec. 3. Most inferential statistical modelling studies either explicitly or
implicitly perform model selection. For example, even if only one model is fitted to data,
results of parameter-specific hypothesis tests could be interpreted as indications for how
the model could be adapted.

(vi) Check model assumptions hold. This step has been discussed in Sec. 4.3. As
mentioned before, it can also form part of the model selection process and if models are
to be used purely for prediction, authors may put a lower emphasis on this step. Never-
theless, it is good practice to always perform this step and to report on it.

(vii) Use models for inference/prediction. This step is self-explanatory, but it is
worthwhile to highlight the different possible uses of statistical models (inference and
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(i) Data collection (experimental design)
(ii) Exploratory analysis of data
(iii) Decide on candidate models
(iv) Model fitting
(v) Model selection
(vi) Check model assumptions hold
(vii) Use models for inference/prediction
(viii) Interpret findings
(ix) Reporting of model and results

Table 3 Summary of typical steps in statistical modelling analysis. Depending on the intended use of a
statistical model, it may not be necessary to perform all of these steps and the order in which they
are performed can also vary.

predictions) again.

(viii) Interpret findings. The importance of correctly interpreting findings from sta-
tistical modelling and model selection has to be stressed. At a basic level, in contrast
to deterministic models, the findings of statistical modelling take the variability in data
into account and this should be considered. For example, estimates for model parameters
should not be viewed as point estimates only, but available information on the uncertainty
about the estimates, such as standard errors, should also be considered. The use of sta-
tistical models were designed for should also be considered. For example, if a model
performs well in model selection for inference, this does not immediately imply that it is
also useful for prediction, and vice-versa [40]. Considering inferential uses of statistical
modelling, the correct interpretation of the outcomes of hypothesis tests (p-values) is cru-
cial and their misuse is subject to considerable controversy that goes beyond the scope of
this review (see e.g. [46–48]).

(ix) Reporting of results. The comprehensive reporting of the outcomes of statistical
model fitting and model selection is important and could, in our view, be improved in
pedestrian dynamics research. Often researchers, ourselves included, only report on the
aspects of statistical models that are of immediate interest to their work. This could be the
outcomes of an inferential analysis stating which factors have an effect on the movement
decisions of pedestrians, for example. However, it is also important to report on elements
of a statistical analysis that may at first glance not be as informative. For example, report-
ing residual plots, or simply publishing residuals alongside papers could be very useful,
as residual plots can highlight shortcomings of models that could be improved on in fu-
ture work. It is widely understood that at a minimum studies should report in sufficient
detail on their analysis so that others could reproduce it. This includes publishing data
and stating software packages used.
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6 A survey of statistical model fitting and selection in
pedestrian dynamics

This section contains a survey of previous work in pedestrian dynamics that uses statistical
model fitting. As already mentioned above, the main inclusion criterion for studies is that
they make use of statistical modelling that goes beyond standard statistical tests. The
resulting literature clusters into three broad categories regarding the application domain
of statistical modelling. Studies in the first category have in common that they investigate
pedestrian dynamics via meaningful summary statistics that focus on specific aspects of
pedestrian behaviour. The two remaining categories are predominantly defined by the
aim to relate theoretical models for pedestrian movement to data by calibrating models
and by comparing the relative quality of alternative models. We have chosen to distinguish
between microscopic and macroscopic models in this general approach, where the former
model type describes the system dynamics at the level of individuals and the latter type
describes system dynamics aggregated over pedestrians. In the following, we introduce
each of these three categories in turn.

6.1 Regression analysis on summary statistics

The most common application of statistical modelling in pedestrian dynamics, perhaps
because it is the most amenable to this type of analysis, relates to investigating the rela-
tionships between variables that summarise specific aspects of pedestrian behaviour. This
type of analysis can be described as regression and Tab. 4 summarises studies that fall
into this category.

A context where such variables arise naturally is route choice, where pedestrians have
to choose between a number of discrete and mutually exclusive options, such as exit doors.
Consequently, many studies develop models for the probability of pedestrians to choose
one of two or more exit routes, testing the effect environmental aspects, such as the width
or crowdedness of exits, or the influence of psychological aspects, such as proxies for
stress or social connections, on the decisions of individuals (e.g. [10–15, 49]). Differ-
ent contexts also naturally give rise to discrete variables capturing pedestrian behaviour.
Examples include the question of whether pedestrians help others or not, depending on
how much time they have to invest (e.g. [50]), or the decisions pedestrians make prior to
evacuating (e.g. [18]). Alternatively, studies use questionnaires in which participants re-
port their behaviour or perception in pedestrian dynamics contexts via discrete categories
[51]. These contexts of predicting the probability of discrete outcomes can be modelled
using existing and well-established statistical models, such as logistic regression or logit
models and their extensions [30, 31].

Other studies identify continuous variables that can take any value or any value within
a given range for investigation. These can arise naturally from the specific context under
investigation, such as the time gaps between consecutive pedestrians passing through a
narrow bottleneck (cf Sec. 2, [6, 7]). Alternatively, researchers select aspects of crowd
dynamics they wish to investigate via surveys, observations or experiments, and devise
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measures for these aspects, as well as for factors that may help to explain their value.
Examples include modelling changes of the self-reported level of perceived safety [20],
risk-taking behaviour [45, 52] or average walking speeds of pedestrians [53–56] in re-
sponse to factors, such as pedestrian density, age or gender.

Tab. 4 shows that only very few studies explicitly test if the underlying assumptions of
the statistical model used are valid. None of the studies found use statistical modelling
primarily for the purpose of prediction, as described in Sec. 4.2. Some studies calibrate
models and subsequently use them to make predictions, but typically this does not involve
a systematic investigation including test and training data (e.g. [7, 12, 49]).

6.2 Calibrating and comparing microscopic models

Microscopic models describe pedestrian dynamics at the level of individuals’ movement.
Their flexibility and ability to capture emergent effects in pedestrian dynamics has made
them a popular tool in research and industry [1–3]. Two key challenges in research con-
cerned with such models are to calibrate them to data and to compare several models to
decide which model is most suitable in general or for a given context. Statistical mod-
elling has been used as one possible approach to address these challenges and Tab. 5
summarises relevant studies.

Statistical model fitting for microscopic models has been performed in three ways.
First, existing deterministic models have been adapted by adding noise, a random vari-
able from an appropriate or convenient probability distribution, to the deterministic model
dynamics (e.g. [9,57–59]; see Fig. 3(B) for an example). This process converts determin-
istic predictions into random variables, as required for statistical model fitting. Second,
microscopic models are formulated in terms of probabilistic outcomes from the start. For
example, cellular automata may describe the probability of pedestrians to move from one
cell to neighbouring cells (e.g. [16]). Third, researchers adopt Likelihood-free techniques
that only require simulations of microscopic models (e.g. [19]). This is the most flexible
approach, but it does have drawbacks, such as being computationally expensive and of-
ten requiring the selection of summary statistics extracted from pedestrian trajectories for
model fitting.

Typical assumptions in statistical model fitting include the conditional independence
of data points, meaning that all spatial and temporal dependencies need to be accounted
for (cf Sec. 2). However, microscopic models describe the movement of all individuals
over time under the assumption that individuals interact somehow (e.g. by attempting to
maintain their personal space). Therefore, the properties of microscopic models mean
that the assumptions of statistical model fitting should be subject to careful scrutiny, but
in practice this is rarely reported (see Tab. 5).

It should be noted that in addition to statistical model fitting approaches, a wide range
of alternative techniques for calibrating and comparing microscopic models for pedestrian
dynamics have been developed (e.g. [23, 24, 60–63]). One of the distinct advantages of
statistical model fitting and model selection over alternative approaches is that model
assumptions have to be made explicit and there is a range of techniques available for
testing their validity (cf Sec. 4.3).
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6.3 Calibrating and comparing macroscopic models

Macroscopic models describe the movement dynamics of pedestrians at an aggregated
level and do not consider individuals separately. To date, few studies on macroscopic
models in pedestrian dynamics have made use of statistical model fitting (Tab. 6). One
possible explanation for this could be that many macroscopic models are inherently de-
terministic and this, in combination with typically small numbers of parameters, means
that calibration is often performed via simple curve fitting [1]. At first glance, it could
be tempting to assume that investigating aggregated dynamics may reduce the issues en-
countered by microscopic models in statistical model fitting (cf Sec. 6.2). However, this
is not the case and researchers resort to adopting pseudo-Likelihood approaches [17] or to
using Likelihood-free techniques when closed-form descriptions of Likelihood functions
are difficult to formulate or unavailable [22]. While some attempts to investigate model
assumptions are being made (e.g. testing distributional assumptions for time intervals
between events [22]), in general the underlying assumptions of statistical models remain
untested (Tab. 6).

7 Common pitfalls

In this section, we provide a brief summary of some of the common pitfalls in statistical
modelling. This collection is neither complete, nor exclusive to pedestrian dynamics
research, but we hope it will be useful in promoting best practices. More detail can
be found in statistics textbooks (e.g. [30, 31]) and a dedicated literature on the subject
(e.g. [48]). We would encourage anyone interested in applying statistical modelling in
pedestrian dynamics to carefully consult this literature.

Multicollinearity arises when variables used in statistical models are correlated. This
can be data-based (i.e. inherent in the data collected) or structural when new variables for
prediction are created by combining existing ones. Multicollinearity can make parameter
estimates and inference on parameters unreliable.

Model assumptions are violated. In Sec. 2 and Sec. 4.3 We have already discussed
the assumptions that typically underlie statistical model fitting and how to assess if the
assumptions are valid. If model assumptions do not hold, inference results using the
model, including any hypothesis tests, cannot be relied upon. As also discussed before,
if a statistical model is only used for the purpose of prediction, some authors reduce the
emphasis on valid model assumptions (cf Sec. 4.2). We would advise to take great care
when adopting such a perspective.

Extrapolation beyond the scope of the model. Trends identified in data by a statistical
model do not necessarily hold beyond the range of values or scenarios covered by the data
used in model fitting. There is a danger that results from statistical modelling are over-
generalised and assumed to hold for populations beyond the ones being studied. This
can be highly problematic as such extrapolation may simply be inappropriate. Thus, the
boundaries of the applicability for a given model should be clearly stated and conditions
for which the findings might be generalise should be discussed carefully.
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Excluding important predictors. This can lead to models that contain misleading
associations between variables. For example, in a hypothetical route choice scenario, in-
dividuals may appear to ignore signage if light levels are not accounted for in a model
describing individual’s decisions. These issues can only be avoided by careful experi-
mental design, data exploration and by considering all available background information
on data (cf Sec. 5).

Parameter interpretation. A common misconception is that parameter estimates al-
ways measure the effect of one variable onto the variable under investigation independent
from other variables. Instead parameter estimates and effects of variables always have to
be considered in the context of other variables and effects measured in statistical models.

Another misinterpretation is that significant p-values in hypothesis tests for a parameter
indicate a cause-and-effect relationship. Unless all other possible effects are controlled
for, e.g. via experimental design, they do not.

A further issue related to parameter interpretation is that parameter estimates are pre-
sented without considering the variability underlying the estimates. A typical example
for this is the reporting of data and model fits via trend lines that give no indication of the
extent to which they capture the variability in the data (e.g. a model fit line is presented
without error bars and without a scatter plot of the data the model was fitted to).

Overfitting. We have already discussed this problem in Sec. 3. An extreme case of
overfitting is to use as many model parameters as there are data points. In less extreme
cases, including too many variables into models makes interpretation difficult.

Sample size. Small data sets can lead to poorly fitted models with large uncertainty
associated with parameter estimates. In general, the more data, the more reliable the
results that can be inferred using statistical modelling. General quantitative guidelines,
such as a number of data points per variable investigated, are not possible, as they depend
on the context (e.g. effect size, variability in the data).

While it is very important to avoid such conceptual mistakes in analysis involving sta-
tistical modelling, overly strict adherence to model assumptions should not suppress re-
search in pedestrian dynamics, in our opinion. For example, if certain model assumptions
cannot be guaranteed to hold, it is still possible to produce insightful research using a
pseudo-likelihood model fitting approach (e.g. [17]). However, whenever such an ap-
proach is taken, it is crucial that findings from model fitting and selection are not over-
interpreted and that the limitations of the analysis are clearly stated and evidenced quan-
titatively (e.g. via residual plots or by tests on distributional assumptions of models, as in
the supplement of [22]). Explicit information on the shortcomings of theoretical models
when related to data is likely to be very useful for future work.

8 Discussion

At the start of this review, we state two fundamental questions and claim that statistical
modelling can help to address them. The first question relates to the possibility of infer-
ring behavioural mechanisms underlying pedestrian dynamics from data and the second
question relates to rigorously comparing the quality of different theoretical models for
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pedestrian dynamics. We have discussed the principles of statistical model fitting and
model selection (Sec. 2 and 3), demonstrating how statistical model selection is an ap-
proach that directly addresses the second question we pose. In outlining three main uses
for statistical modelling (Sec. 4), we illustrate how using statistical models for inference
presents a rigorous and well-established approach for inferring information from data, as
required in the first question we pose (Sec. 4.1). Our very brief outline of the main anal-
ysis steps (Sec. 5) and of some of the common mistakes (Sec. 7) will hopefully help to
start a discussion on best practices in the use of statistical modelling for addressing our
two fundamental questions in pedestrian dynamics. The survey of existing approaches in
pedestrian dynamics provides many starting points for authors to identify techniques that
most suit their research (Sec. 6). While this provides an overview of the literature, some
questions relating to statistical model fitting and model selection in pedestrian dynamics
remain.

Why should statistical modelling and model selection be used in pedestrian dynamics?
There are alternative approaches to calibrating and comparing theoretical models that
have been used in pedestrian dynamics (e.g. [23, 24, 60–63]) and these may produce reli-
able results. However, there are some features of statistical modelling that distinguishes it
from other approaches and that make it an attractive option. First, it is a well-established
methodology for which many techniques, textbooks, tutorials and software tools already
exist. Second, statistical modelling is very flexible and can be used to address most ques-
tions on relating theoretical models to data in pedestrian dynamics. Third, statistical
modelling explicitly considers uncertainty in data and models and facilitates probabilistic
statements about aspects, such as parameter estimates or relative model quality. Impor-
tantly, this also means that the outcome of an analysis using statistical modelling can be
inconclusive, if there is not enough data, for example (e.g. probability of one model being
better than another is no different from random). Finally, statistical model selection ac-
counts for model complexity, or the number of model parameters, and thus help to prevent
overfitting.

Are new methods specifically developed for pedestrian dynamics needed? The survey
of studies in Sec. 6 shows that a wide range of problems in pedestrian dynamics can be
addressed using existing methods for statistical model fitting and model selection. In
our opinion the challenge does not lie in developing methodology for fitting and com-
paring models, but in developing statistical models for pedestrian dynamics. There is no
shortage of theoretical models in pedestrian dynamics (Fig. 1), but most of them are not
formulated as statistical models. Some models can be re-formulated as statistical models
(e.g. microscopic models, Sec. 6.2), but the difficulty is to develop models that account
for the most important spatial and temporal dependencies in data, as discussed in Sec. 2.
Alternatively, researchers can focus on identifying measures that comprehensively cap-
ture certain aspects of pedestrian dynamics and that facilitate statistical modelling, such
as selecting from discrete options in route choice (Sec. 6.1).

Is there a need for one unified framework? The range of problems investigated in pedes-
trian dynamics is broad, ranging from the route choice of individuals and predicting the
next step of pedestrians to predicting large-scale density fluctuations in crowds. There-
fore, we suggest that a search for one methodological framework is misguided. Instead,
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the approach most appropriate for a given problem should be selected.
Should statistical model fitting and model selection be used more in pedestrian dynam-

ics? This review shows that statistical modelling is already used to great effect in pedes-
trian dynamics. Nevertheless, we argue that pedestrian dynamics would benefit from an
even wider use of statistical modelling. The first reason for doing so is that it requires
the explicit mathematical statement of model assumptions, including the dependencies
between variables, but importantly also relating to the extent and type of variability in the
model. This makes it possible to directly scrutinise model assumptions. The second main
reason is that statistical model selection could be used to approach the task of comparing
the many different theoretical models for pedestrian dynamics. This may not lead to a
generally valid hierarchy of models, but instead may help to identify more or less suited
modelling approaches for different contexts.

Perhaps more important than an increased use is the correct use of statistical modelling
in pedestrian dynamics. To promote best practices, we have provided a list of typical steps
in statistical modelling (Sec. 5) and summarised some of the common pitfalls (Sec. 7).
There is also a wide literature on additional issues in statistical analyses of data (e.g.
[48]). An important first step is for all researchers to openly engage with and report on
the limitations of their statistical modelling approaches.

Why are model checking results under-reported in pedestrian dynamics? The survey in
Sec. 6 indicates that only few studies, this authors’ work included, report model check-
ing results, such as residual plots or other tests for validating model assumptions. This
under-reporting is likely not unique to research in pedestrian dynamics and it does not
necessarily imply that researchers do not perform model checking. One possible expla-
nation could be that some model checking analysis does not provide indisputable results.
For example, ambiguity could arise from questions on the level of correlation that is
permissible when considering auto-correlations in residuals of time series analysis (cf
Sec. 4.3) or on the number and severity of outliers in data. Even though these interpre-
tation issues are a natural consequence of applying a mathematical analysis to real-world
data, researchers may understandably shy away from trying to explain why their statisti-
cal model assumptions are appropriate. An alternative explanation for the under-reporting
of model checking results could be that researchers perform model checking, are happy
with the results, and therefore do not see the need to report their findings. We would like
to make the case for an increased reporting on model checking in pedestrian dynamics.
This will inform future work by highlighting specific shortcomings of existing models or
particular features in data that could serve as starting points for novel models. While still
relevant, this is less important in standard regression analysis, such as the ones discussed
in Sec. 6.1, but it is extremely useful when fitting complex microscopic models to data
(Sec. 6.2). One example for the use of model checking results is discussed in Sec. 4.3
and [6]. Encouraging the reporting of model checking results will also depend on other
researchers being accepting of the inconclusiveness of this analysis.

Why are statistical models predominantly used for inference in pedestrian dynamics?
In Sec. 4 we outlined three main uses for statistical modelling in pedestrian dynamics:
inference, prediction and model checking. The literature survey in Sec. 6 shows that few,
if any, studies use statistical modelling for the purpose of prediction (see also Sec. 4.2).
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The reason for this could be that training statistical models for prediction is thought to
require a large amount of diverse data [40], which is only starting to become available in
pedestrian dynamics research. Therefore, we expect that in the near future there will be
an increased emphasis on developing predictive models in pedestrian dynamics. Many of
these models may be developed in a machine learning context, but it is important to keep
in mind that it is also possible to develop statistical models for the same purpose, or to
formulate machine learning techniques as statistical models (e.g. logistic regression for
binary classification). As already discussed above, in our opinion a statistical modelling
perspective could provide added benefits relating to model checking and model selection.

We hope that the list of pitfalls we present will be useful as a check-list when discussing
results of research findings based on statistical modelling in pedestrian dynamics and that
it will help researchers to avoid methodological or interpretational issues or at least make
them aware of them. We believe this is important to help pedestrian dynamics avoid issues
found by meta-analyses in other fields of research [48].

Based on what we have discussed here, we suggest that statistical model fitting and
model selection has already contributed substantially to the field of pedestrian dynamics.
Considering the need for comparing existing theoretical models and for making sense of
the increasingly available data, we propose that an enhanced consideration of the ideas
outlined here would be useful. Given the particular challenges to statistical modelling in
pedestrian dynamics, we expect that this endeavour will be inherently interesting scien-
tifically and methodologically.
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[4] Vermuyten, H., Beliën, J., De Boeck, L., Reniers, G., Wauters, T.: A review of
optimisation models for pedestrian evacuation and design problems. Safety science
87, 167–178 (2016)



Statistical Model Fitting and Model Selection in Pedestrian Dynamics Research 27

[5] Haghani, M., Sarvi, M.: Crowd behaviour and motion: Empirical methods. Trans-
portation research part B: methodological (2017)

[6] Bode, N.W., Codling, E.A.: Statistical models for pedestrian behaviour in front of
bottlenecks. In: Traffic and Granular Flow’15, pp. 81–88. Springer (2016)

[7] Bode, N.W.: The effect of social groups and gender on pedestrian behaviour
immediately in front of bottlenecks. In: Proceedings of Pedestrian and
Evacuation Dynamics 2016, Collective Dynamics, pp. 92–99. Springer (2016).
doi:10.17815/CD.2016.11

[8] Bode, N., Holl, S., Mehner, W., Seyfried, A.: Disentangling the impact of social
groups on response times and movement dynamics in evacuations. PLoS ONE 10(3),
e0121227 (2015)

[9] Hoogendoorn, S.P., Daamen, W.: Microscopic calibration and validation of pedes-
trian models: Cross-comparison of models using experimental data. In: Traffic and
Granular Flow05, pp. 329–340. Springer (2007)

[10] Haghani, M., Sarvi, M., Shahhoseini, Z.: Accommodating taste heterogeneity and
desired substitution pattern in exit choices of pedestrian crowd evacuees using a
mixed nested logit model. Journal of choice modelling 16, 58–68 (2015)

[11] Haghani, M., Sarvi, M.: Stated and revealed exit choices of pedestrian crowd evac-
uees. Transportation Research Part B: Methodological 95, 238–259 (2017)

[12] Haghani, M., Sarvi, M.: Following the crowd or avoiding it? empirical investigation
of imitative behaviour in emergency escape of human crowds. Animal behaviour
124, 47–56 (2017)

[13] Bode, N.W., Wagoum, A.U.K., Codling, E.A.: Information use by humans during
dynamic route choice in virtual crowd evacuations. Royal Society open science 2(1),
140410 (2015)

[14] Bode, N.W., Wagoum, A.U.K., Codling, E.A.: Human responses to multiple sources
of directional information in virtual crowd evacuations. Journal of The Royal Soci-
ety Interface 11(91), 20130904 (2014)

[15] Bode, N.W., Codling, E.A.: Human exit route choice in virtual crowd evacuations.
Animal Behaviour 86(2), 347–358 (2013)

[16] Lovreglio, R., Ronchi, E., Nilsson, D.: Calibrating floor field cellular automaton
models for pedestrian dynamics by using likelihood function optimization. Physica
A: Statistical Mechanics and its Applications 438, 308–320 (2015)

[17] Hänseler, F.S., Lam, W.H., Bierlaire, M., Lederrey, G., Nikolić, M.: A dynamic net-
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