{3 Collective
Dynamics

Vadere: An Open-Source Simulation
Framework to Promote Interdisciplinary
Understanding

Benedikt Kleinmeier'? €© . Benedikt Zonnchen'? €© - Marion Godel'? -
Gerta Koster’

' Department of Computer Science and Mathematics, Munich University of Applied Sciences,
Munich, Germany

2 Department of Informatics, Technical University of Munich, Garching, Germany
E-mail: benedikt.kleinmeier@hm.edu

0 Authors contributed equally to this work

Received: 1 April 2019 / Last revision received: 11 June 2019 / Accepted: 6 August 2019
DOI: 10.17815/CD.2019.21

Abstract Pedestrian dynamics is an interdisciplinary field of research. Psychologists, so-
ciologists, traffic engineers, physicists, mathematicians and computer scientists all strive
to understand the dynamics of a moving crowd. In principle, computer simulations offer
means to further this understanding. Yet, unlike for many classic dynamical systems in
physics, there is no universally accepted locomotion model for crowd dynamics. On the
contrary, a multitude of approaches, with very different characteristics, compete. Often
only the experts in one special model type are able to assess the consequences these char-
acteristics have on a simulation study. Therefore, scientists from all disciplines who wish
to use simulations to analyze pedestrian dynamics need a tool to compare competing ap-
proaches. Developers, too, would profit from an easy way to get insight into an alternative
modeling ansatz. Vadere meets this interdisciplinary demand by offering an open-source
simulation framework that is lightweight in its approach and in its user interface while
offering pre-implemented versions of the most widely spread models.

Keywords Pedestrian dynamics - microscopic simulation - open-source - software -
framework

Collective Dynamics 4, A21:1-34 (2019) Licensed under

http://collective-dynamics.eu/
mailto:benedikt.kleinmeier@hm.edu
http://dx.doi.org/10.17815/CD.2019.21
http://collective-dynamics.eu/
http://collective-dynamics.eu/index.php/cod/issue/view/4
http://collective-dynamics.eu/index.php/cod/article/view/A21
http://creativecommons.org/licenses/by/4.0/

2 B. Kleinmeier and B. Zonnchen et al.

1. Introduction

Pedestrian dynamics is an active and versatile research area that attracts scientists from
sociology and psychology to engineering, computer science and mathematics. This inter-
disciplinary scientific community shares a common goal: to enhance the understanding of
crowd behavior. Scientists approach this goal from different angles: For example, sociol-
ogists and psychologists observe and analyze the human behaviors that affect pedestrian
movement [1]. They describe their findings verbally. Mathematicians and physicists mold
the observed behavior into equations [2]. Computer scientists develop computer models
based on these equations [3]. Each researcher wants to get new insights by using different
but connected techniques and by asking different but connected questions.

The interdisciplinary character of pedestrian dynamics entails communication prob-
lems and misunderstandings: For example, the term “agent” [4] used by computer sci-
entists to denote a simulated pedestrian may not be immediately understood as such by
psychologists. The term “crowd” has a very rich meaning for social psychologists [5-7]
while a physicist may simply think of an aggregation of individuals like an aggregation of
particles [8]. A third prominent example is the term “panic”’. While panic is considered
as myth by sociologist and human behaviour scientists [9], this word is still used by many
computer scientists [10, 1 1]. Thus terms might even be misleading in an interdisciplinary
group. The consequences of these language difficulties go beyond research as soon as
decision makers at crowded events, such as city planners and the police apply research
results.

A pedestrian simulation tool reflects the interdisciplinary character of the field. Be-
haviors that were observed and described by empirical scientists are operationalized, then
mapped to equations, algorithms, and finally computer programs. These computer pro-
grams can be executed to reenact real scenarios in a virtual world, where they can be
re-observed. Therefore, they are a powerful tool to foster interdisciplinary understanding
in pedestrian dynamics.

Laboratory and field experiments are essential to understand pedestrian behavior, but
they need participants and bind a lot of scientific and non-scientific human resources.
Here simulations can help out [12, 13]. Also, they are generally more time-efficient.
Generating data such as trajectories is easy and often fully automated, while to this day,
extracting trajectories from video footage remains a semi-manual process. Parameter
variation is straight forward while it is costly and time-consuming in controlled experi-
ments and impossible in field observations. Aside from practical and economic consider-
ations, simulations can address situations that would be unethical in an experiment, e. g.
situations with dangerously high densities. Beside simulations, virtual and augmented
reality environments offer possibilities to test such critical scenarios without endangering
probands [14-16].

In addition, scientists can learn from studying the model, that is, the set of equations
itself, provided the model matches reality sufficiently well. Whether a match is good or
not depends on the particular research question.

At this point, researchers are faced with a challenge: the vast number of competing
models from which they can choose [2, 17-19]. Pedestrian dynamics deal with the most

Vadere: An Open-Source Simulation Framework 3

sophisticated organism on earth, the human being. At the same time, the field is relatively
new, with most of the progress and publications stemming from this millennium as illus-
trated by the search result shown in Fig. 1. Therefore, it is not surprising that there is no
universally accepted model of pedestrian dynamics. Indeed, the number of models and
the level of detail they try to map is still growing.

Engineering

N
o
o

P .
%0 /\/ Computer Science

#Publications
o
o
Se—

-
o
o

/
/‘ Mathematics
[

jel
o

Others

oo
0—0-00-0000=0%=¢00000¢0 00"

0 e

1970 1980 1990 2000 2010 2020 Physics and Astronomy

X X Environmental Science
Year Social Sciences

(a) Publications per year (b) Overall publications per subject

Figure 1 Scopus search result for the term “pedestrian dynamics” on the 5th of June in 2019. Overall
2422 document are listed.

One way to categorize pedestrian simulation models is by their scale: macroscopic and
microscopic [20]. For both categories, the goal is to reproduce coarse-scaled quantities
like densities (measured in persons per area) or flow (measured in persons per second).
While macroscopic models, such as [21,22], see the crowd as a continuum, microscopic
models see it as an aggregate of individuals. Consequently, individuals are simulated
based on their distinct attributes, such as their desired speeds. In addition to coarse-scaled
quantities, fine-scaled quantities like the velocity or step length of a pedestrian at a certain
time can be measured. Therefore, fine-scaled phenomena observed in the real world, such
as the decrease in step length with increasing density, can be reproduced as well.

Microscopic models are often conceptually divided into three levels: (1) the strategic
level: activity choice, (2) the tactical level: activity schedule, area and route choice to
reach the area and (3) the operational level: walking behavior. A description can be found
in [23]. The operational level, that is, the walking behavior, is embodied by a specific
locomotion model.

In this contribution, we focus on the locomotion level. We argue that walking behavior
must be modeled adequately before we can move on to modeling more complex situations,
that is, before we can build a tactical and strategic level on top. Several approaches for
modeling microscopic pedestrian dynamics have been developed in the last decades [24].
Among these are models based on cellular automata (CA) [25-30], models based on
ordinary differential equations (ODE) [2, 31-34], models based on cognitive heuristics
[35,36] and models based on optimizing a utility, such as the quasi-continuous optimal
steps model [19,37-39].

4 B. Kleinmeier and B. Zonnchen et al.

In short, even on the locomotion level alone, practitioners and researchers can pick and
choose from a rich selection of solution proposals that may or may not be suitable for
their research question. For example, in a large and open field scenario with millions of
pedestrians a fast cellular automaton model may be a good, and perhaps the only choice,
to gain first insights, while it will fail in situations with fine granularity. It is very difficult
to make decisions on model descriptions alone.

This is where we introduce Vadere. It is a free and open-source pedestrian simulation
framework for microscopic pedestrian dynamics that was expressively conceived to fa-
cilitate comparison between locomotion models. Thus, it comes with pre-implemented
versions of the most widely spread locomotion models. Vadere is released under the
LGPL license.

Alternative implementations of the above-mentioned models are offered by a large
number of commercial simulators, like PTV (social force model), LEGION (unknown
model) and accu:rate (optimal steps model). However, to understand the dynamics of a
simulation, not only the mathematical formulation of the model but also its implemen-
tation must be known and well understood. Indeed, the mathematical description will
often differ from its implementation [40]. For example, the mathematical model defini-
tion might be through an ordinary differential equation (ODE) as in force based models.
The algorithmic formulation, on the other hand, is through a numerical solver, such as
Euler’s method, which may — or may not — converge to the solution of the ODE. See
[41] for numerical issues. Another example is the use of different pseudo random number
generators with different starting seeds. We assume a world of irrational numbers and
true random numbers which do not exist in the coding world. Those details are often not
mentioned in the model description. Thus, easy access to the code is a key requirement.

Several other open-source pedestrian dynamics simulators exist, for example FDS+Evac
[42], JuPedSim [40], Menge [43], MomenTUMv?2 [44] and SUMO [45]. All frameworks
share common conceptual characteristics but differ in their goals. Vadere is a lightweight
simulator. The framework focuses on comparing existing and implementing new loco-
motion models and, at this point, solely covers the operational level, to keep the core
simple and expandable. Developers can focus only on the model code, the rest is offered
by the common code base. As a consequence, Vadere offers modern algorithms and data
structures, and many more tools like a graphical user interface (GUI), Python scripts to
compare simulation outputs and a command line interface to run multiple simulations in a
systematic manner. All those features support and simplify the scientific work, especially
the calibration and validation of locomotion models whose importance is emphasized in
[40]. In the spirit of interdisciplinary collaboration, the secondary focus of Vadere is
its usability, which we continuously improve. The open-source approach allows other
researchers to use and extend Vadere to their needs.

In Sec. 2, we give an overview on existing locomotion models and pedestrian dynamics
simulators that implement subsets of these models. In Sec. 3, we introduce the Vadere
simulation framework. We show core features of Vadere which are relevant for users.
Moreover, we reveal technical details which are essential when implementing a generic
software framework that supports multiple locomotion models. In addition, we shed light
on how we test our simulation software while it is being improved and used continuously.

Vadere: An Open-Source Simulation Framework 5

2. Overview of locomotion models and simulation
frameworks

In this section, we cover two topics. Firstly, we introduce the three perhaps most widely
used locomotion models which are all part of Vadere. Then, we give an overview on
existing open-source crowd simulators that each support one or two of these locomotion
models. From now on we refer to a simulated pedestrian as an agent while reserving the
term “pedestrian” for the real world.

2.1. Locomotion models

In order to simulate realistic pedestrian behavior, adequate locomotion models are neces-
sary. Researchers of various areas have been studied the way pedestrians move and have
translated their findings into mathematical models.

Historically, three development phases of locomotion models can be observed. In 1984,
Stephen Wolfram introduced the idea of a cellular automaton to describe “systems con-
structed from many identical components, each simple, but together capable of complex
behavior” [17]. Gipps and Marksjo picked up this idea to describe “interactions between
pedestrians” [25] through a cellular automaton.

The second phase started with Helbing und Molnér’s publication of the social force
model (SFM) in 1995 [2]. They renewed the idea of using “forces” to describe pedestrian
movements that was introduced by Hirai and Tarui in 1975 [46]. In the SFM, pedestrian
motion is driven by a superposition of forces called “social” forces that, according to the
authors, represent a “measure for the internal motivation of the individuals to perform
certain actions (movement)” [2]. The SFM was extended by several researchers such as
[31] to cope with some of its problems like the treatment of inertia.

The current third phase started around 2000 when model development further branched
out. ODE-based modeling turned from second order equations present in the SFM to
first order equations, thus eliminating several artifacts known in the SFM [47]. The re-
sults are so-called velocity-based models [33,34]. At the same time several more model
types emerged: velocity-obstacle-based models [48—50] for collision avoidance inspired
by robotics, rule-based models such as [35, 36] and models which combine different ap-
proaches like the optimal steps model (OSM) [19]. Most models have been adjusted and
extended to fit the findings from interdisciplinary experiments and studies. For example,
the OSM was extended based on the (inter-) personal space theory [37,38] and the social
identity theory [39].

Cognitive heuristics, social forces, Newtonian mechanics, velocity obstacles, social
identities and personal space theory, computational geometry, queuing theory, cellular au-
tomata, and even fuzzy logic are ideas and techniques used in the development of modern
microscopic pedestrian models. This shows that the exact nature of microscopic pedes-
trian behavior is open to debate. The scientific discourse will continue and the number of
models will further increase. As a result, scientists need a software to compare them all.

In the following sections, we sum up the core ideas of three locomotion models which

6 B. Kleinmeier and B. Zonnchen et al.

Figure 2 The four basic components of pedestrian crowd simulations: (1) agents (blue) who move from
a (2) starting point (green) to a (3) destination (red) while avoiding (4) obstacles (gray).

are widely used: cellular automata, forced based models and the optimal steps model.

2.1.1. Common ground for all locomotion models

Topography All locomotion approaches that we describe here use four basic modeling
components: (1) agents — simulated pedestrians — who move from a (2) starting point
(also called source or origin) to a (3) destination or target while avoiding (4) obstacles and
other agents. These four basic components are illustrated in Fig. 2. Together they form
what we call topography.

.........
- ~a
- ~

(a) Euclidean distance ignores obstacles. (b) Geodesic distance considers obstacles.

Figure 3 Differences in pedestrian routing when using the Euclidean distance and the geodesic distance
as a basis for calculating floor fields.

Floor fields In addition, models use a floor field, also called scalar field [51] or nav-
igation field, which “guides” agents from an origin to a destination. These floor fields
combine attraction and repulsion. While targets attract agents, obstacles and other agents
repulse. In an alternative definition floor fields encode utility for an agent modeled as
“homo economicus”. Closeness to the destination increases utility, too close proximity to
walls or other agents decreases utility. Floor fields can also be interpreted as a probabil-
ity density function for the next move. The incorporation of the scalar fields depends on
the model, but the general principle remains the same. The dominant part of most floor
fields is the utility caused by proximity to the destination, or the attraction by the target.
The simplest ansatz to encode proximity is to calculate the Euclidean distance from a
destination to each point in the topography. The closer an agent is to the destination, the

Vadere: An Open-Source Simulation Framework 7

better its position. However, the Euclidean distance to the target fails whenever obstacles
are located between an agent and its destination as illustrated in Fig. 3. Furthermore, it
might fail even if the shortest path is free, for example, pedestrians do not necessarily
follow the shortest path when passing doors [16]. Therefore, in Vadere, we only use the
geodesic distance to a target. The minimal geodesic path can be the shortest as well as the
fastest path [52,53]. Solving the eikonal equation is a widely used approach to obtain the

Il

(c) t=6s (d) Dynamic floor field, t = 6s

(e) t =32s (f) Dynamic floor field, r = 32s

Figure 4 Dynamic floor fields: The situation is illustrated on the left. The traveling time « is plotted on the
right. The wave propagates from the destination area (red) and flows around obstacles (gray).
Dark blue colors represent small values of u(x) while brighter blue and red colors represent
higher values of u(x). For a point x inside an obstacle, the wave stops (speed f(x) = 0), i. e., the
travel time is infinite (u(x) = o0). For a dynamic floor field f depends on the current density with
respect to pedestrians and obstacles.

geodesic distance between a destination and each position in the topography. The eikonal
equation is a non-linear partial differential equation:

[Vu(x)|[f(x)=1 forxeQcR?
u(x)=0 ifxeTl.

(D

The solution u of the eikonal equation is the travel time of a wave front that starts at the
target region I' C Q and propagates across the topography area Q with speed f > 0. For
all positions inside obstacles, f is zero, that is, the wave stops. Compare to Fig. 4. If
f = 1 everywhere else, u(x) is the shortest distance to the target area I starting at position

8 B. Kleinmeier and B. Zonnchen et al.

x while skirting obstacles. To achieve more realistic medium scale avoidance behavior,
one can choose a speed function f for the wave front that depends on the pedestrian
density. By lowering f at crowded locations, that is slowing the wave down, medium-
scale avoidance of other pedestrians can be modeled [52, 53]. In this case, the floor field
becomes dynamic and must be recomputed regularly.

Recently, a lot of progress has been achieved in the calibration of navigation fields
in the context of cellular automata. For example, in [54, 55] the authors use empirical
trajectory data to improve the static floor field of their model. This data-driven approach
might be beneficial beyond cellular automata. Analyzing the influence of floor fields and
calibrating them on empirical evidence is an important task which could be supported by
Vadere.

2.1.2. Cellular automata (CA)

Stephen Wolfram generalized the idea of a cellular automaton:

Cellular automata are mathematical idealizations of physical systems in
which space and time are discrete, and physical quantities take on a finite set
of discrete values. A cellular automaton consists of a regular uniform lattice
(or “array”), usually infinite in extent, with a discrete variable at each site
(“cell”). [...] A cellular automaton evolves in discrete time steps, with the
value of the variable at one site being affected by the values of variables at
sites in its “neighborhood” on the previous time step. [56]

In the context of pedestrian dynamics, the concept of CA is implemented as follows. The
topography area is divided into cells of equal shape that are either empty or occupied by a
pedestrian, a target or an obstacle. The state of a cell is updated at each time step, that is,
agents move from cell to cell according to certain rules. In most CA-models for pedestrian
dynamics the rules depend on a floor field as described above and positions are updated
instantaneously. There are several ways to define the update order of pedestrians. The
order in which pedestrians are updated has an impact on the simulation outcome [57]. It
is rarely parallel, to avoid collisions, and thus differs from Wolfram’s original definition
of cellular automata. Furthermore, the state of a cell is not purely defined by the state of
neighboring cells but also by some global information. Fig. 5 visualizes the concept of a
cellular automaton at one specific time step.

The major advantage of cellular automata is their simplicity with respect to under-
standing, implementation and computation. Compared to other locomotion models like
ODE-based models, which require integration, cellular automata are significantly less
computationally expensive. Thus, CA-models were more popular in the past when com-
putational power was a more limited resource. However, the coarse discretization of
cellular automata leads to artifacts. More complex cellular automata where each agent
is contained in several small cells attain a small variation of step lengths and directions
[58] but not the full range. Additionally, agents tend to move along zig-zag trajectories
because of the grid structure and may get stuck in narrow passages that are not resolved
by the grid. Fig. 6 visualizes these artifacts.

Vadere: An Open-Source Simulation Framework 9

Figure 5 Cellular automaton based on an evenly-spaced grid over the topography content. Agents move
from a source (green) green area to a target (red).

Vadere implements cellular automata as a special case of the optimal step model where
certain constraints hold. See Sec. 2.1.4. Thus, the Vadere implementation does not do jus-
tice to the computational efficiency a cellular automaton can achieve. However, it allows
scientists to judge for themselves whether or not the grid artifacts would compromise the
validity of their simulation study.

= Shortest Path

— Simulated Path

(a) Movement artifacts: Agents (b) Impact of the grid resolution: A too coarse grid hinders
walk in a zig-zag manner. agents to pass through a narrow passage.

Figure 6 Two drawbacks when using cellular automata: movement artifacts and impact of the grid reso-
lution on the motion.

2.1.3. Force-based models

In 1975 a first force-based model, inspired by the motion of a shoal, was introduced in
Japan [46]. Four years later, [59] proposed a model inspired by forces between magnets.
The best known and analyzed force-based model is Helbing’s and Molnar’s social force
model (SFM) from 1995 [2]. Extensions were proposed by Helbing and his group [60,61]
as well as others [31,41,62-65]. Agents are treated like particles that are accelerated
or decelerated by “social” forces taking Newton’s second law of dynamics as a guiding
principle. The primary force F; of all these models is the force that drives an agent [

towards its destination |
Flt = ?l (v?el —Xl) . ()

10 B. Kleinmeier and B. Zonnchen et al.

Here v? is the agent’s free-flow velocity, x; its position, ¢; the direction pointing towards
the target region and 7; the agent’s reaction time. If the agent can move unhindered, that
is, if there are no obstacles or other agents, this is the only force affecting the agent. In
the following, we describe the SFM in its original form without its extensions.

While obstacles always evoke a repulsive force pushing agents away, forces defined
between two agents can either attract, e. g. to model groups, or repulse. Acceleration is
described through

w; = F;+ fluctuation, 3)

where wy is the unrestricted velocity induced by the sum of all forces F; acting on agent [
[2]. The fluctuation term was added to take random variations into account. The actual
velocity X; of agent [is limited to some maximum speed v;"**:

wy if [lwy|| <V

X =vi(w) = { ypa “4)

wymt— otherwise.
[fwil]

In its original version, the direction towards the target ¢; is the normed vector pointing
to the closest point of the target region. This entails numerical problems when an agent
“steps” on the target [41]. Instead the normed gradient of u(x;) at the agent’s position x;,
defined by Eq. 1, that is
—Vu(x;)
[Vu(a)||”
gives a more sophisticated definition of the target direction [66] which is used in Vadere.
The social force model has been reported to reproduce collective phenomena like lane
formation, the “faster-is-slower” effect, oscillations at bottlenecks and clogging at exit
doors [31]. Johansson et al. provide an overview of extensions of the social force model,
such as the inclusion of physical forces, a constrained interaction range and limiting the
number of other pedestrians considered [67]. The social force model is very popular, but it
has also been criticized for artifacts that stem from its proximity to Newtonian mechanics,
namely oscillating trajectories and overlapping agents [47, 68], and for numerical issues
[41]. Another problem of all force-based models arises with the multiple roles of the
relaxation time 7; in Eq. 2. It affects how precisely agents follow their preferred path,
and at the same time, how they avoid collisions [67]. These two behaviors may not be
correlated. The authors believe that it is up to the scientists to decide which artifacts can
be tolerated in view of their specific research questions. Vadere facilitates this decision:
scientists can visually compare simulation outcomes for test scenarios of their choosing.

)

€] —

2.1.4. Optimal steps model (OSM)

The optimal steps model (OSM) defines motion by a series of discrete footsteps. Like cel-
lular automata-based but unlike ODE-based models, each footstep is modeled explicitly
as a discrete time event. It starts and ends at a specific time but is performed instanta-
neously. The model was introduced in [19] and enhanced in [37-39]. In this contribution
we refer to the latest version of the OSM described in [39]. As many other models the
OSM seeks a balance of goals: reach a target while avoiding obstacles and other agents.

Vadere: An Open-Source Simulation Framework 11

(a) Slowing down due to smaller footsteps. (b) A sample of possible next positions (red).

Figure 7 Illustration of footsteps of an agent in the OSM. The circles (green) indicate the actual step
radius and the area (blue) represents the agent torso. Since each step takes the same amount of
time, smaller steps (left) lead to a lower walking velocity. All positions inside the circles (green)
are possible next positions.

During the simulation, each agent / performs a series of steps as depicted in Fig. 7(a).
The next foot position is found by optimizing utility within a circle around the agent. The
utility is encoded in a floor field P, as described in Sec. 2.1.1. P, can also be interpreted
as a potential field. The radius s? of the step circle is correlated with the agent’s free-flow
velocity v(l). More precisely

sV =PBo+Bi-W+e, Bo,Bi>0, e~ AN(0,0%), (6)

where the error term € is assumed to be normally distributed [19]. In crowded situations
the agents make shorter step, shorter than s?, while the duration between steps, s? / v?,
remains unchanged. Thus deceleration in a crowd is an emergent behavior of the OSM.
Vadere’s OSM uses an event driven update scheme [69] and each step of an agent is an
event. Stepping events of multiple agents are ordered in an event queue and executed
accordingly [57].

The potential field P, of an agent / is given by a sum of sub-utilities or sub-potentials:
P, contributes attraction to the target or utility from proximity to the target and is given by
the solution of the eikonal Eq. |1 for all agents that share a target. It is defined globally,
that is, on the whole simulation area. P,;; causes local repulsion (or dips in utility) by
other agents, and F, ; local repulsion from obstacles:

P (x) =P (x)+ Z P,1i(x)+ max P, ;(x), (7)
i=1,il Jje{l,...m}

with n agents and m obstacles in the topography (compare [19] and [3, p. 63]).

The agent potential P, ; translates the theory of (inter-) personal space [70] into a

mathematical formula. P,;; is the sum of three functions: p;7, pffli’ and p% which

12 B. Kleinmeier and B. Zonnchen et al.

correspond to the personal space, the intimate space and the torsos of agents / and i.

P W)+)+ T) i) < (i)

P i(x) = Py (x) + i (x) if (ri4r) < di(x) < 8" +r, N
pili Pllp,f’(x) if 5Iim +rp <di(x) < 8 +n
0 else.

Here y; is the position, r; the radius of the torso of agent i and 8/, 6/ are the radii of
the personal and intimate space of agent /. d;(x) gives the Euclidean distance between y;
and x, that is, d;(x) = ||y; — x||. In the current implementation of the OSM the personal
spaces and radii of all agents are equal. For more details we refer to [38,71].

Let x; be the position of an agent /, then its next position x;; minimizes P; (or maxi-
mizes —F;) with respect to all reachable positions, that is,

X1 = argmin Py(y) ©)
yedisc (xg)
with
disc () = {y € R” : [[y—xi|| < 57} (10)

Different floor field definitions can be used to reproduce competitive jostling or more
cooperative queuing at bottlenecks [72] and several other behaviors [38,53,73,74]. The
optimization is robust and with carefully designed potentials, the OSM is free of overlaps
and oscillations.

Using the OSM leads to solving many optimization problems. For each step of each
agent a non-trivial optimization problem has to be solved. This optimization is compu-
tational expensive and requires most of the overall computation time. Introducing more
complex potential functions complicates the evaluation of P, which contributes directly to
the computation time of the optimization. This is aggravated by fact that a strict event-
driven update hinders parallelization of the computation. Therefore, simulating thousands
of agents in real-time using the OSM with Vadere is not yet possible. Performance im-
provement is one of the topics we are currently working on.

Figure 8 Illustration of the OSM mimicking a cellular automaton. If the agents can only reach the points
(red) on the circle (green), we obtain a cellular automaton considering the von Neumann neigh-
borhood. Including also the points on the larger circle (blue) expands the neighborhood to the
Moore neighborhood.

Vadere: An Open-Source Simulation Framework 13

Mimicking cellular automata with the optimal steps model The OSM can mimic mo-
tion in a cellular automaton by restricting the optimization to equidistant points on a circle
[19]. See Fig. 8.

2.1.5. Other locomotion models

We present a short description of other models that are implemented in Vadere. For details
we refer to the respective publications.

Gradient navigation model (GNM) The gradient navigation model is similar to velo-
city-based models that avoid the acceleration equation of the harmonic oscillator charac-
teristic for force-based models. The GNM uses a superposition of gradients of distance
functions to directly change the direction of the velocity vector [33]. Speed is a scalar
that is adapted according to the difference between the desired speed and the actual speed
while considering that reaction is delayed. Therefore, the relaxation time 7 is disentangled
from path finding.

Behavioral heuristics model (BHM) The behavioral heuristics model (BHM) follows
a completely different approach [35]: simple heuristics rooted in cognitive psychology
determine each agent’s next step. Each agent uses one of four heuristics that correspond
to four levels of cognitive capacity. The simplest is the step or wait heuristic: The agent
checks whether the next full step in the desired direction leads to a collision. If so, it waits
and if not, it steps forward. The tangential evasion heuristic allows the agent to evade
another agent in its path tangentially, if the evasion step does not cause a collision. This
requires two additional collision tests. Two more levels of cognitive effort are modeled.
See Fig. 9.

Step or Wait Tangential Sideways Follow
Evasion Evasion

O Qs 000 OO
d O g e ©

Figure 9 Illustration of behaviors with the four heuristics defined by the behavioral heuristics model: step
or wait, tangential evasion, sideways evasion and follow (compare [35]).

g

Steering behaviors model Reynolds’ steering behavior model offers simulation as an
alternative to scripting the path of each individual to reproduce the aggregated motion of
a flock of birds, a herd of land animals, or a shoal of fish [75]. The model defines a set
of steering behaviors which can be combined to establish more complex goals such as
walking through a narrow corridor. Steering behaviors are motivated by the visual beauty
observed in nature. Reynolds’ goal was to reproduce realistic looking motion pattern for
animation and games rather than studying pedestrian behavior. Due to his target group

14 B. Kleinmeier and B. Zonnchen et al.

the computational complexity of the model is low. Furthermore, the ability to combine
different steering behaviors and the code accessibility furthers the software development
process. New steering behaviors can be introduced without inventing a whole new model
and an open-source implementation of Reynolds’ work is available on his website. De-
spite the different target audience, Reynolds’ model is used in pedestrian dynamics to
compare it against other models. In [76], for example, the authors compare the social
force model, a velocity-obstacle-based model presented in [49] and Reynolds’ steering
behavior model.

2.2. Existing simulation frameworks

Several companies like, PTV, LEGION and accu:rate, offer licenses for commercial crowd
simulators based on microscopic models. However, their implementations are proprietary.
The code cannot be analyzed to understand it in detail and to ensure that computer exper-
iments can be reproduced exactly. This hinders comparison between models and thus the
knowledge transfer between researchers that we strive for in this contribution. Therefore,
we limit this discussion to open-source frameworks. The overview in Tab. | lists frame-
works that have been documented through publications or tutorials and have undergone
recent development activities. The table shows the initial release date, the programming
language the simulator is based on, the number of files and the lines of code '. For a more
extensive, but never exhaustive overview, we refer to [71, p. 17-22].

Among the six simulators in Tab. 1, SUMO (simulation of urban mobility) plays a
special role. SUMO focuses on complete intermodal traffic systems including road vehi-
cles, public transport and pedestrians, while FDS+Evac, JuPedSim, Menge and Momen-
TUMVv2 concentrate on the actual pedestrian dynamics.

Simulator Name Initial Release Language Files Lines of Code
FDS+Evac [77] 2007 Fortran 715 249,702
JuPedSim [40] 2014 C++ 774 173,973
Menge [43] 2014 C++ 697 67,476
MomenTUMV2 [78] 2016 Java 814 56,569
SUMO [79] 2001 C++ 1,618 253,472
Vadere 2010 Java 977 73,145

Table 1 Open-source simulation frameworks for pedestrian dynamics (in alphabetical order).

FDS+Evac The Fire Dynamics Simulator (FDS) has been developed by the National
Institute of Standards and Technology (NIST) since 2000 [80]. FDS started as a pure
large-eddy simulator for slow flows which focuses on smoke and heat transport from fires.
In the following years, the VIT Technical Research Centre of Finland joined this devel-
opment and integrated the evacuation module FDS+Evac into FDS in 2007. FDS+Evac

1 ines of code excluding test code, blank lines and comments counted with “cloc” software tool. See
App. A.l for more details about how lines of code were obtained.

Vadere: An Open-Source Simulation Framework 15

focuses on simulating human egress. The simulation framework consists of four com-
ponents: (1) The simulation core which is called FDS. (2) The graphical user interface
Smokeview (SMV) that is used to display the output of FDS. (3) The FDS+Evac submod-
ule for FDS to integrate agent-based simulations of humans and (4) additional third-party
tools for visualization, pre- and post-processing. FDS+Evac uses the social force model
[2] to move agents in a 2-dimensional plane and offers grouping behavior and different
exit selection strategies for agents [77].

JuPedSim JuPedSim’s development is mainly driven by the Forschungszentrum Jiilich.
JuPedSim is a framework for the simulation of pedestrian dynamics at a microscopic
level that focuses on evacuation scenarios. JuPedSim consists of four modules: (1) JP-
Score simulates the movement of agents. JPScore provides three models on the tactical
layer: a shortest path strategy, a quickest path strategy and a cognitive map to explore the
environment, e.g. to discover doors. On the operational layer, JPScore provides three
continuous models based on ordinary differentials: the force-based generalized centrifu-
gal force model [31], the collision-free velocity model [81] and the wall-avoidance model
[82]. (2) JPSreport includes tools for density, velocity and flow measurements to analyze
agent trajectories. (3) JPSvis visualizes simulation results through 2D or 3D animations.
JPSvis can be directly connected to JPScore to get an online visualization of a simulation
run. (4) JPSeditor is a tool for editing model parameters and the topography.

Menge The Menge framework originated at the University of North Carolina. Like for
Vadere, the goal is to facilitate model comparison. For this, the Menge developers provide
a very generic framework and invite researchers to contribute to the project. Menge breaks
the simulation down into six sub-problems: (1) Target selection. (2) Plan computation:
find the destination by using graphs or potential fields. (3) Plan adaption: use local navi-
gation to find the preferred velocity (4). Motion synthesis: this means the physical motion
of an agent including head, shoulder and feet movement which is not yet addressed within
the Menge framework. (5) Environmental queries: identify influencing factors which are
in line-of-sight of agent. (6) Crowd systems: simulations of aggregated individuals. Com-
pared to Vadere, Menge offers but also insists on a software structure which realizes all
three levels of pedestrian behavior defined in [23]: the operational (locomotion) layer, the
tactical layer, and the strategic layer. This predefined structure is valuable if the model
can be mapped onto it but hampering if not. Overhead and additional complexity result
in longer development times before a researcher can compare locomotion models.

MomenTUMv2 MomenTUMvV2 has been developed at Technical University Munich.
The focus lies on analyzing and comparing pedestrian behavior models. Like Menge, the
MomenTUMyv2 framework implements all levels of pedestrian behavior defined in [23],
that is, the simulation as well as the software itself breaks down into strategic, tactical and
operational layers. The strategic layer is responsible for the destination choice of agents.
The tactical layer contains four items: (1) navigating to a destination (2) participating
(e.g. in front of a stage) (3) queuing (4) searching unknown locations. The operational

16 B. Kleinmeier and B. Zonnchen et al.

Functional - run simulations of pedestrian crowd behavior
- specify and store parameters in text files with a simple format
- generate output that describes the trajectories of individuals
- online processing of the simulation
- online and post-visualization
- integrated graphical user interface

Non-functional - only use open-source software
- run on modern desktop hardware
- platform independence
- object-oriented, high-level programming language
- implement new models without changing the framework
- framework must not impose any model concept or structure
- modular design and architecture
- reusability of basic algorithms and data structures

Table 2 Software requirements for Vadere (taken from [3, p. 17])

layer provides models for walking and waiting agents. Both models can either use a cel-
lular automaton or a force-based model for locomotion. Compared to Vadere, and similar
to Menge, the three-layered structure in the software introduces development overhead
before two locomotion models can be compared.

SUMO SUMO is spearheaded by the Institute of Transportation Systems of the German
Aerospace Center (DLR). The SUMO simulator allows to evaluate infrastructure changes
before implementing them in a real environment. Its scope and its user community are
much larger than that of Vadere and the three other pedestrian dynamics simulators. We
mention it, because in the long run, an interface between SUMO and well-established lo-
comotion models from the pedestrian community would benefit the scientific community.

3. Vadere: A framework to compare different locomotion
models

The Vadere project was started in 2010 [71, p. 23]. Its main intention was and still is to
facilitate development and comparison of locomotion models. Therefore, it was designed
as a generic framework, but with an eye on keeping it lightweight, so that new locomotion
models can be quickly implemented. In [3], the software requirements are summarized as
shown in Tab. 2. This section first introduces Vadere from a user’s perspective, and then
delves into the software architecture for readers who wish to develop with Vadere.

Vadere: An Open-Source Simulation Framework 17

3.1. Vadere for users

The following section provides an overview of Vadere and its optional graphical user
interface. The goal is to ease researchers from different domains into the first simulation
steps.

3.1.1. Vadere: overview

Vadere is implemented in Java programming language. Thus, it is available for GNU-
/Linux, MacOS and Microsoft Windows. Vadere follows the KISS principle [83]: keep it
simple, stupid. For this reason, Vadere reads in simulation parameters, like the topography
or an agent’s radius, from a human-readable JSON-based text file instead of using a binary
format. Also, the simulation results — usually x and y coordinates for each pedestrian
and a time step — are written to text files. In this way, users can use text editors to create
input files for Vadere and they can open result files from Vadere with 3rd-party software
like MATLAB. Furthermore, text files allow users to modify parameters quickly in an
automated way. This is essential for studies where parameters must be varied and, thus,
thousands of simulations must be run.

Performing simulations with Vadere requires three steps visualized in Fig. 10 and sum-
marized below:

1. Create an input file for the simulation.
2. Run the simulation with the input file from (1).
3. Analyze the simulation results.

The graphical user interface supports all three steps. Step (1) and (3) can also be carried
out with 3rd-party applications that a researcher might be more familiar with.

2. Simulation

Input file
containing:

Vadere GUI
vadere-gui. jar

« Topography
* Locomotion model

Output directory

« Output processors containing:

« Evacuation time
« Pedestrian position

or

« evacuation_time.txt
+ postvis.trajectories

Vadere Console

Extension: .scenario vadere-console. jar

Name: output

Figure 10 Three steps of a simulation in Vadere: (1) Create an input file with extension . scenario (2)
Run Vadere GUI or Console with the input file (3) Analyze the output files using Vadere GUI
or a 3rd-party software.

When creating input files for the simulation, so-called output processors can be used to
specify what output files should be written. Different output processors exist, €. g. to write
the trajectory of each agent or to write the density at each time step. It is also possible to

18 B. Kleinmeier and B. Zonnchen et al.

let multiple output processors write into the same file. Listing 1 visualizes the structure
of an example output file written by Vadere.

timeStep pedestrianlId x y

1 1.6654341119190224 4.871023637696483
.5881140640080735 3.0259345093049403
.3134937811396925 2.512808181284221
.39821467392553 5.137733950515711
.291974452089554 2.7697502789642234
.764197128690711 1.7321670841844834

NN R
WN P WN
[I QS gy

Listing 1 Shortened example of an output file written by Vadere describing trajectories of three agents.

We think that a highlight for the scientific community lies in our simple, but effective
approach to make simulation results completely reproducible. When compiling Vadere
from sources — which are under version control using Git — Vadere adds the commit
hash to the simulation output files. The commit hash allows to exactly track with which
Vadere version a simulation was executed.

3.1.2. Vadere: graphical user interface

Vadere includes an optional graphical user interface (GUI) to simplify usage. The GUI
has multiple features. Firstly, it provides an overview of the scenario files and the corre-
sponding simulation outputs. Secondly, it offers a simple but effective drawing program
to define the topography and to manipulate the attributes of topography elements like
agents, sources, targets, obstacles and stairs. Thirdly, during the design of a simulation
study, possible problems are identified and transmitted to the user, e. g. if a pedestrian
is defined without a target. The fourth useful GUI feature is the possibility to visualize
the simulation run online and offline. Through this monitoring option developers get an
immediate visual feedback whether or not agents move “properly” [84]. Fig. 11 shows a
screen shot of the Vadere GUI.

We provide an executable file, called vadere-gui.jar that includes all functionali-
ties. In addition, we provide a console version called vadere-console. jar. that should
be used to automate simulation runs, for example, when running multiple instances or
running Vadere on a remote computer.

3.1.3. Vadere: locomotion models supported in Vadere

Currently, Vadere supports seven locomotion models, namely the behavioral heuristics
model, a simple bio-mechanics model, the gradient navigation model, the optimal steps
model, an optimal velocity model, an implementation of Reynolds’ steering model and
an implementation of the original social force model. The locomotion that emerges from
cellular automata is be mimicked by using the optimal steps model (compare Fig. 8).
This approach is much less efficient than an implementation that makes use of the grid
structure to build a true automaton. Therefore, Vadere can be used to see whether a
cellular automaton model is sufficiently accurate to answer a research question, but it

Vadere: An Open-Source Simulation Framework 19

Vadere GUI - OPMOPS-M18

Project Scenario Help

)) ® 0l-NarrowedStreet-Pollichstrasse-NotNarrowed-0SM
P Run all scenarios| | Run selected scenarios

(‘Simulation | Model | Topography | Events | Data output | Post-Visualization |
Scenario Status nge
-NarrowedStreet-Pollichstrasse-Na... ze O 0 O
NarrowedStreet-Pollichstrasse-Na... - = -
-NarrowedStreet- o.
-NarrowedStreet-
ryingPedestrian
ryingPedestr
ryingPedestrianNumber

n
n

.| In|
-No...In
n

n

n

N
i

Output files
-NarrowedStreet-Pollichstrasse-Narrowed-GNM_2019-01
-NarrowedStreet rasse-Narrowed-OSM_2019-01
-NarrowedStreet- rasse-NotNarrowed-GNM_2019
-NarrowedStreet-Pollichstrasse-NotNarrowed-O5M_2019-01-28_14-50...

arying| T -RichardWagnerStrasse-OSM-1200agents_...
rying| T -RichardWagnerStrasse-OSM-400agents 2...
g -RichardWagnerStrasse-OSM-800agents 3...

14-32-40...
8 16-00-18...
1-28 14-34...

ralr
®

hi

S
g
S

e
1)

E] I [+

FPS SE Time Timestep | 139

Done

Figure 11 Vadere GUI: the top left side lists the available input files, the bottom left side lists the output
files and the middle pane contains the online visualization of the simulation.

does not do justice to the computational speed that a well-designed cellular automaton
achieves.

3.2. Vadere for developers

The following section shows Vadere’s software architecture in more detail. Moreover, this
section sheds light on how to write a generic simulation framework that supports different
locomotion models and demands minimal effort for add-ons.

3.2.1. Vadere: architecture

Vadere’s architecture applies the model view controller (MVC) software pattern [85].
Therefore, Vadere is divided into three interconnected modules: state, gui and
simulator. Moreover, Vadere is complemented by two supporting modules: utils and
meshing. In sum, it is composed of five separated modules depicted in Fig. 12.

utils consists of utility classes implementing algorithms required by all other mod-
ules such as basic math functions, algorithms for computational geometry, or simple 1I/O-
handling. meshing is a specialized computational geometry library that offers methods
to mesh a geometry. The library’s mesh algorithms, notably our own EikMesh, are tai-
lored for floor field computation. The library can be used in projects in and outside of the
pedestrian dynamics’ community. For more information we refer to [86]. state contains

20 B. Kleinmeier and B. Zonnchen et al.

gui

0000

simulator

000

meshing state

O
‘ utils \

Figure 12 Illustration of Vadere’s layered software architecture: A rectangle represents an isolated soft-
ware module. The software modules in the upper layers depend on modules in the lower layers.

©)

topography elements like agents, targets, sources and all attributes, that is, all objects that
define the simulation state. simulator is the most important module for developing new
locomotion models. It contains all locomotion models, the simulation loop itself and all
other controller components. The gui module contains all classes that are part of the
graphical user interface. It is optional but recommended, especially for starters, since it
improves usability. The MVC pattern leads to a clear separation of responsibilities for the
three MVC modules within Vadere:

e Model (state): the model layer does not contain any logic. Instead, it is the sim-
ulation state, i.e. the composition of agents, sources, obstacles, targets and their
corresponding attributes like the number of agents a source creates.

e Controller (simulator): the control layer contains the logic to change objects of
the model layer. For instance, to update the x and y coordinates of all agents in each
time step. Mainly, the control layer holds implementations for different locomotion
models.

e View (gui): The view visualizes the current state of the model objects in form of a
GUIL. Note that the GUI itself implements the MV C pattern but on another level.

Fig. 13 shows a package diagram containing important classes of Vadere and how these
classes interact with each other.

3.2.2. The simulation loop

Vadere’s core is its simulation loop. When starting a simulation run, Vadere enters the
simulation loop. In each simulation step, the locomotion model changes the agents’ po-
sitions by the update call. See listing 2. Afterwards, the simulated time is incremented.

Vadere: An Open-Source Simulation Framework 21

Controller changes Model updates View
org.vadere.simulator | org.vadere.state org.vadere.gui

control scenario onlinevisualization
- Simulation - Agent | Yisualized by _ _ o f -
- SimulationState // - Obstacle
- SourceController manage v | |- Source
- TargetController —H-—-———-——-- 7L — = |- Target postvisualization
- e - Topography) |
e = B
modif}
models 7 Y 1
s 5 5
- BehaviouralHeuristicsModel e attributes.scenario Ihold projectview
- Biom}echanjcs.Moflel // - AttributesAgent : - VadereApplication
- Grafi)entNavlganonModel s _ AttributesObstacle < —
- OptimalStepsModel I ~
- ObstacleVelocityModel Entry point for GUI
- ReynoldsSteeringModel n
) . attributes.models
- SocialForceModel fl configure
- N-"~"~""""~"™"™"77 |- AttributesBHM N7 T T T T T T T

- AttributesBMM
- AttributesGNM
- AttributesOSM
- AttributesOVM
- AttributesReynolds
- AttributesSFM

? triggers

User

Figure 13 Package diagram showing important classes in Vadere and how they are embedded into the
MVC pattern. Blue arrows indicate communication between the MVC components. Black
arrows show how classes communicate with each other. The controller classes hold the logic
to change the model classes which are visualized by the view classes.

Model model = ... // loaded from input file
double simulationTime = 0;

while (simulationIsRunning) {
// use "SourceController" and "TargetController"

// update the locomotion model

model .update (simulationTime) ;
simulationTime++;

}

Listing 2 Simulation loop of Vadere.

Despite Vadere’s versatility its core is a single while-loop. Fig. 14 shows how the sim-
ulation loop updates agents’ positions at three different time steps using the OSM loco-
motion model. Listing 2 alludes to the SourceController and the TargetController
controller in a comment line (line 6). The sourceController spawns new agents inside
the topography. The TargetController removes agents from the topography once they
have reached their target. The locomotion model acts on the remaining agents after both
operations have been completed.

22 B. Kleinmeier and B. Zonnchen et al.

(a) t=2,4s (b) t =6s

() t =10,8s

Figure 14 Agent positions at three different times using the OSM locomotion model.

<<Interface>>
Model

“void mitialize(...)
+void preLoop(double simTimeInSec)
+void postLoop(double simTimelnSec)
+void upd double simTimelInSec)

A
I
I
I
| i [t A i et i
I 1 : 1 I
I]] I
I | ! | I
I I : I I Models based on
! | | 1 ! differential equations.
I I I I
I
| | | |
| | ! | |
<<Class>> <<Class>> <<Class>> <<Class>> <<Abstract Class>>
Behavioural Biomechanics Optimal Reynolds ODEModel
Heuristics Model Steps Steering
Model Model Model
N
<<Class>> <<Class>> <<Class>>
Gradient Optimal Social
Navigation Velocity Force
Model Model Model

Figure 15 The common locomotion model interface “Model” and its implementations.

3.2.3. Including different locomotion models using the strategy pattern

Vadere’s goal is to offer a generic framework to support different locomotion models.
The challenge is to keep development effort minimal. The solution idea is to provide an
interface. More precisely, each locomotion model must implement a common interface
that contains four methods. See Fig. 15:

e initialize (): replaces the constructor for the model.

Vadere: An Open-Source Simulation Framework 23

e preLoop (): is called before the simulation loop starts.
e postLoop (): is called after the simulation loop has finished.

e update (): is called during the simulation loop.

The simulation loop in listing 2 only holds the generic Model objects and invokes its
update () method without knowing its concrete implementation. This approach is known
as strategy pattern in software engineering. Implementing a new locomotion model in
Vadere requires just to implement the four methods of the Mode1 interface. At each time
step, the locomotion model has access to the topography object that encapsulates all
required elements like agents, obstacles and targets.

3.3. Quality assurance: Unit testing and continuous integration

Errors can occur at each stage in the modeling process from real-world observations to
the mathematical formulation of a locomotion model to its algorithmic formulation, and
finally its implementation. See Fig. 16. Therefore, verification and validation are cru-
cial. Through verification we want to assure that the software fulfills the requirements
that we formulated, without questioning the requirements. The latter is the objective of
validation where we interpret simulation outcomes as hypotheses derived from our model
and compare those to empirical findings. While this can never be more than a failure to
falsify one’s own model [87] it is essential for building trust. In view of this, we establish
a verification and validation process as integral part of Vadere.

Real - validate Simulated
World World
observe simulate

implemeni,
Locomotion translate | Algorithmic Simulation
Model Formulation Program
verify
Modeling

Figure 16 Verification and validation throughout the modeling process: We verify software implementa-
tions. We validate the whole model against empirical observations.

3.3.1. Unit Testing

Crucial code is best developed in a test-driven manner to enforce correctness of written
source code. Listing 3 shows the principle of unit testing in the Vadere project with an
example. We use the Java unit testing framework JUnit [88]. Vadere’s test suite currently
covers 24%? of the productive source code excluding the view components. See Fig. 13.

Retrieve the detailed test report at https://gitlab.lrz.de/vadere/vadere/—/jobs/
370587.

https://gitlab.lrz.de/vadere/vadere/-/jobs/370587
https://gitlab.lrz.de/vadere/vadere/-/jobs/370587

24 B. Kleinmeier and B. Zonnchen et al.

Version Control Continuous Integration\
Server and Deployment Worker

triggers

Developers

1. Run verfification tests.

2. Run validation tests.

3. Deploy on wmmvadere.org/releases/

Figure 17 The three actors in the continuous integration and deployment cycle: Developers commit
changes to the version control server. The version control server triggers worker computers
which validate, verify and deploy Vadere.

One could argue that this is a low coverage compared to industrial software [89], but we
believe it is sufficient for a research simulator that needs to stay flexible. Also, we focus
on testing core classes to make the simulations reliable while keeping development fast.

public class TestGeometry {

@Test

public void testlLineCirclelIntersectionZeroResults () {
VCircle circle = new VCircle(l, 1, 1); // x,y,radius

VLine line = new VLine (3,0, 4, 1); // x1,yl,x2,y2

// Method under test.

VPoint [] intersectionPoints =
GeometryUtils.intersection(line, circle);

assertTrue (intersectionPoints.length == 0);

}

Listing 3 The test class TestGeometry tests the code in class Geometry.

3.3.2. Continuous integration and deployment

Our second strategy for error reduction is so-called continuous integration. In our case
this means that a test pipeline is invoked each time the Vadere source code is modified
and pushed to the source code repository. First, the test pipeline performs all unit tests.
This represents the code verification. Then, special test scenarios which are defined by the
RiMEA “Guideline for Microscopic Evacuation Analysis” [90, pp. 38-51] are executed.
The guideline defines 15 test cases for evacuation scenarios which shall be passed by a
pedestrian dynamics’ simulator. Additionally, we define 16 scenarios based on experi-
ments published and evaluated in [91] and compare simulation results to real world data.
Test scenarios serve partly as model verification and partly as model validation. Currently,
for the OSM locomotion, at least 49 test runs with different parameter sets are executed.
Finally, the verified and validated executable of the Vadere simulator is placed on the web-
site http://www.vadere.org/releases/. The website hosts Vadere versions
for GNU/Linux and Microsoft Windows. We use the web-based Git repository manager
GitLab [92] to manage our code base. With GitLab’s pipeline feature and self-written
Python scripts — which are kept in the repository as well — we are able to automate the

http://www.vadere.org/releases/

Vadere: An Open-Source Simulation Framework 25

three steps: verification, validation and deployment of Vadere. Fig. 17 summarizes all
steps that are carried out during the continuous integration and deployment cycle. GitLab
reports any errors during the two pipeline stages via email to the developers and provides
error details through the web interface. Furthermore, we use GitLab’s issue tracker to
create feature requests and bug reports. This makes the development process transparent.

4. Conclusion

In this paper, we presented the free and open-source simulation framework Vadere for
pedestrian dynamics. Vadere contains implementations of several locomotion models,
among them the cellular automata, the social force model and the optimal steps model
to facilitate model comparison. We described Vadere’s architecture and showed how to
integrate new locomotion models in a straightforward way. Each model’s implementation
is verified based on JUnit tests and validated against the standard test scenarios from
the RIMEA guidelines. In addition, for any change in the code both verification and
validation tests are automatically run and results are communicated to the developers.
This mechanism assures a high source code quality and gives developers an immediate
feedback when a result is considered implausible by the scientific community.

Our vision of Vadere is a tool that encourages research within and is used by the whole
interdisciplinary pedestrian dynamics community instead of just serving the purposes of
our research group. We encourage each member of this interdisciplinary community to
use Vadere in the way that suits him or her: as a user who conducts and analyzes simu-
lation experiments, as a modeler who introduces new models or as a software developer
who improves and extends the software.

Acknowledgements We thank the research office (FORWIN) of the Munich University of Ap-
plied Sciences and the Faculty Graduate Center CeDoSIA of TUM Graduate School at Technical
University of Munich for their support.

Authors’ contributions B.K. drafted the article. B.Z. revised the article, especially Sec. |
and 2.1. M. G. critically reviewed the article and provided input for the conclusion. G. K. critically
revised the article and added the abstract and gave final approval for publication.

Funding B.K.is supported by the German Federal Ministry of Education and Research through
the project OPMoPS to study organized pedestrian movement in public spaces (grant no.
13N14562). B.Z. and M. G. are supported by the German Federal Ministry of Education and
Research through the project S2UCRE to study the acceleration of microscopic pedestrian simu-
lations by designing efficient and parallel algorithms (grant no. 13N14463).

Vadere contributors (in alphabetical order) Core developers: Felix Dietrich, Michael
Seitz, Isabella von Sivers, Benedikt Zénnchen; Contributors: Florian Albrecht, Benjamin Degen-
hart, Marion Godel, Benedikt Kleinmeier, Daniel Lehmberg, Jakob Schéttl, Stefan Schuhbick,
Swen Stemmer, Mario Teixeira Parente, Peter Zarnitz.

26

B. Kleinmeier and B. Zonnchen et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Drury, J., Reicher, S.: Collective action and psychological change: The emergence
of new social identities. British Journal of Social Psychology 39(4), 579-604 (2010).
doi:10.1348/014466600164642

Helbing, D., Molnér, P.: Social Force Model for pedestrian dynamics. Physical
Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Seitz, M.J.: Simulating pedestrian dynamics: Towards natural locomotion and
psychological decision making. Ph.D. thesis, Technische Universitit Miinchen,
Munich, Germany (2016). URL https://mediatum.ub.tum.de/?id=
1293050

Adrian, J., Bode, N., Amos, M., Baratchi, M., Beermann, M., Boltes, M., Corbetta,
A., Dezecache, G., Drury, J., Fu, Z., Geraerts, R., Gwynne, S., Hofinger, G., Hunt,
A., Kanters, T., Kneidl, A., Konya, K., Koster, G., Kiipper, M., Michalareas, G.,
Neville, F., Ntontis, E., Reicher, S., Ronchi, E., Schadschneider, A., Seyfried, A.,
Shipman, A., Sieben, A., Spearpoint, M., Sullivan, G.B., Templeton, A., Toschi,
E., Yiicel, Z., Zanlungo, F., Zuriguel, 1., van der Wal, N., van Schadewijk, F., von
Kriichten, C., Wijermans, N.: A glossary for research on human crowd dynamics.
Collective Dynamics (2019). doi:10.17815/CD.2019.19

Reicher, S.D.: The St. Pauls’ riot: An explanation of the limits of crowd action in
terms of a social identity model. European Journal of Social Psychology 14(1), 1-21
(1984). do1:10.1002/e9sp.2420140102

Drury, J., Reicher, S.: The intergroup dynamics of collective empowerment: Sub-
stantiating the social identity model of crowd behavior. Group Processes & Inter-
group Relations 2(4), 381402 (1999)

Challenger, R., Clegg, C.W., Robinson, M.A., Leigh, M.: Understanding crowd
behaviours: Supporting evidence. Tech. rep., University of Leeds (2009)

Templeton, A., Drury, J., Philippides, A.: From mindless masses to small groups:
Conceptualizing collective behavior in crowd modeling. Review of General Psy-
chology 19(3), 215-229 (2015). doi:10.1037/gpr0000032

Fahy, R.F., Proulx, G., Aiman, L.: Panic or not in fire: Clarifying the misconception.
Fire and Materials 36(5-6), 328-338 (2012). doi1:10.1002/fam.1083

Helbing, D., Farkas, 1., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407, 487-490 (2000). doi:10.1038/35035023

Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love
parade disaster. EPJ Data Science 1(7), 1-40 (2012). doi:10.1140/epjds’

http://dx.doi.org/10.1348/014466600164642
http://dx.doi.org/10.1103/PhysRevE.51.4282
https://mediatum.ub.tum.de/?id=1293050
https://mediatum.ub.tum.de/?id=1293050
http://dx.doi.org/10.17815/CD.2019.19
http://dx.doi.org/10.1002/ejsp.2420140102
http://dx.doi.org/10.1037/gpr0000032
http://dx.doi.org/10.1002/fam.1083
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1140/epjds7

Vadere: An Open-Source Simulation Framework 27

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Gwynne, S.M., Boyce, K., D. Kuligowski, E., Nilsson, D., P. Robbins, A., Lovreglio,
R.: Pros and cons of egress drills. In: Interflam 2016, 14th International Confer-
ence on Fire Science and Engineering (2016). URL https://www.nist.gov/
publications/pros—and-cons—egress—drills

Gwynne, S., Kuligowski, E., Boyce, K., Nilsson, D., Robbins, A., Lovreglio, R.,
Thomas, J., Roy-Poirier, A.: Enhancing egress drills: Preparation and assessment of
evacuee performance. Fire and Materials (2017). doi1:10.1002/fam.2448

Kinateder, M., Ronchi, E., Nilsson, D., Kobes, M., Miiller, M., P., P., Miihlberger,
A.: Virtual reality for fire evacuation research. In: 2014 Federated Con-
ference on Computer Science and Information Systems, pp. 313-321 (2014).
doi:10.15439/2014F9%4

Feng, Z., Gonzilez, V.A., Amor, R., Lovreglio, R., Cabrera-Guerrero, G.: Im-
mersive virtual reality serious games for evacuation training and research: A
systematic literature review. Computers & Education 127, 252-266 (2018).
doi:10.1016/7j.compedu.2018.09.002

Lovreglio, R.: A review of augmented reality applications for building evacuation.
In: 17th International Conference on Computing in Civil and Building Engineering
(2018). URL http://arxiv.org/abs/1804.04186

Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419-424
(1984). do1:10.1038/311419a0

Antonini, G.: A discrete choice modeling framework for pedestrian walking be-
havior with application to human tracking in video sequences. Ph.D. thesis, Ecole
polytechnique fédérale de Lausanne (2005)

Seitz, M.J., Koster, G.: Natural discretization of pedestrian move-
ment in continuous space. Physical Review E 86(4), 046108 (2012).
doi:10.1103/PhysRevE.86.046108

Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian be-
haviour models. Transportation Research Part F: Traffic Psychology and Behaviour
12(3), 242-255 (2009). doi:10.1016/7.trf.2008.12.004

Hughes, R.L.: A continuum theory for the flow of pedestrians. Trans-
portation Research Part B: Methodological 36(6), 507-535 (2001).
doi:10.1016/50191-2615(01)00015-7

Treuille, A., Cooper, S., Popovi¢, Z. Continuum crowds. ACM
Transactions on Graphics (SIGGRAPH 2006) 25(3), 1160-1168 (2006).
doi1:10.1145/1141911.1142008

https://www.nist.gov/publications/pros-and-cons-egress-drills
https://www.nist.gov/publications/pros-and-cons-egress-drills
http://dx.doi.org/10.1002/fam.2448
http://dx.doi.org/10.15439/2014F94
http://dx.doi.org/10.1016/j.compedu.2018.09.002
http://arxiv.org/abs/1804.04186
http://dx.doi.org/10.1038/311419a0
http://dx.doi.org/10.1103/PhysRevE.86.046108
http://dx.doi.org/10.1016/j.trf.2008.12.004
http://dx.doi.org/10.1016/S0191-2615(01)00015-7
http://dx.doi.org/10.1145/1141911.1142008

28

B. Kleinmeier and B. Zonnchen et al.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Hoogendoorn, S.P.,, Bovy, P.H.L.: Pedestrian route-choice and activity scheduling
theory and models. Transportation Research Part B: Methodological 38(2), 169—
190 (2004). doi1:10.1016/50191-2615(03)00007-9

Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based
on seven methodological approaches. Building and Environment 44(3), 437-445
(2009). do1:10.1016/7j.buildenv.2008.04.002

Gipps, P, Marksjo, B.: A micro-simulation model for pedestrian flows.
Mathematics and Computers in Simulation 27(2-3), 95-105 (1985).
doi1:10.1016/0378-4754(85)90027-8

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation
of pedestrian dynamics using a two-dimensional cellular automaton. Phys-
ica A: Statistical Mechanics and its Applications 295, 507-525 (2001).
doi:10.1016/50378-4371(01)00141-8

Kirchner, A., Kliipfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.:
Simulation of competitive egress behavior: comparison with aircraft evacuation
data. Physica A: Statistical Mechanics and its Applications 324(3—4), 689-697
(2003). doi1:10.1016/S0378-4371(03)00076-1

Was, J., Gudowski, B., Matuszyk, P.: Social distances model of pedestrian dynam-
ics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) Cellular Automata, Lecture
Notes in Computer Science, vol. 4173, pp. 492-501. Springer Berlin Heidelberg
(2006). do1:10.1007/11861201_.57

Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space
acquisition process of pedestrians using proxemic floor field model. Phys-
ica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012).
doi:10.1016/7.physa.2011.07.056

Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular au-
tomata model for pedestrian flow. Physical Review E 85(2-1), 021119 (2012).
doi:10.1103/PhysRevE.85.021119

Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force
model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010).
doi:10.1103/PhysRevE.82.046111

Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of
pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425442 (2011).
do1:10.3934/nhm.2011.6.425

Dietrich, F., Koster, G.: Gradient navigation model for pedestrian dynamics. Physi-
cal Review E 89(6), 062801 (2014). doi:10.1103/PhysRevE.89.062801

http://dx.doi.org/10.1016/S0191-2615(03)00007-9
http://dx.doi.org/10.1016/j.buildenv.2008.04.002
http://dx.doi.org/10.1016/0378-4754(85)90027-8
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(03)00076-1
http://dx.doi.org/10.1007/11861201_57
http://dx.doi.org/10.1016/j.physa.2011.07.056
http://dx.doi.org/10.1103/PhysRevE.85.021119
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.3934/nhm.2011.6.425
http://dx.doi.org/10.1103/PhysRevE.89.062801

Vadere: An Open-Source Simulation Framework 29

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within con-
tinuous optimal velocity models. Physical Review E 90, 042812 (2014).
doi:10.1103/PhysRevE.90.042812

Seitz, M.J., Bode, N.-W.E.,, Koster, G.: How cognitive heuristics can explain social
interactions in spatial movement. Journal of the Royal Society Interface 13(121),
20160439 (2016). doi1:10.1098/rsif.2016.0439

Xiao, Y., Chraibi, M., Qu, Y., Tordeux, A., Gao, Z.: Investigation of voronoi dia-
gram based direction choices using uni- and bi-directional trajectory data. Physical
Review E 97(5) (2018). doi:10.1103/PhysRevE.97.052127

von Sivers, 1., Koster, G.: How stride adaptation in pedestrian models improves nav-
igation. arXiv 1401.7838(v1) (2014). URL http://arxiv.org/abs/1401.
7838v1l

von Sivers, 1., Koster, G.: Dynamic stride length adaptation according to utility
and personal space. Transportation Research Part B: Methodological 74, 104—117
(2015). doi:10.1016/5.trb.2015.01.009

von Sivers, 1., Templeton, A., Kiinzner, F., Koster, G., Drury, J., Philip-
pides, A., Neckel, T., Bungartz, H.J.: Modelling social identification and
helping in evacuation simulation. Safety Science 89, 288-300 (2016).
doi:10.1016/73.s8sc1.2016.07.001

Chraibi, M., Zhang, J.: JuPedSim: an open framework for simulating and analyz-
ing the dynamics of pedestrians. In: SUMO2016 - Traffic, Mobility, and Logis-
tics, Proceedings, Berichte aus dem DLR-Institut fiir Verkehrssystemtechnik, vol. 30,
pp- 127-134. SUMO Conference 2016, Berlin (Germany), 23 May 2016 - 25 May
2016, Deutsches Zentrum fiir Luft- und Raumfahrt e. V., Institut fiir Verkehrssys-
temtechnik, Braunschweig (2016). URL http://juser.fz-juelich.de/
record/809790

Koster, G., Treml, F., Godel, M.: Avoiding numerical pitfalls in
social force models. Physical Review E 87(6), 063305 (2013).
doi:10.1103/PhysRevE.87.063305

FDS+Evac Contributors: Fire Dynamics Simulator with Evacuation (FDS+Evac).
Online: http://virtual.vtt.fi/virtual/proj6/fdsevac/
documents/FDS+Evac_webpages.pdf (2019). Accessed 27. May 2019

Curtis, S., Best, A., Manocha, D.: Menge: A modular framework for simulating
crowd movement. Collective Dynamics (2016)

Kielar, P., Biedermann, D., Borrmann, A.: MomenTUMv2: A Modular, Extensible,
and Generic Agent-Based Pedestrian Behavior Simulation Framework. Tech. rep.,
TUM (2016). doi1:10.13140/RG.2.2.21387.69929

http://dx.doi.org/10.1103/PhysRevE.90.042812
http://dx.doi.org/10.1098/rsif.2016.0439
http://dx.doi.org/10.1103/PhysRevE.97.052127
http://arxiv.org/abs/1401.7838v1
http://arxiv.org/abs/1401.7838v1
http://dx.doi.org/10.1016/j.trb.2015.01.009
http://dx.doi.org/10.1016/j.ssci.2016.07.001
http://juser.fz-juelich.de/record/809790
http://juser.fz-juelich.de/record/809790
http://dx.doi.org/10.1103/PhysRevE.87.063305
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+Evac_webpages.pdf
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+Evac_webpages.pdf
http://dx.doi.org/10.13140/RG.2.2.21387.69929

30

B. Kleinmeier and B. Zonnchen et al.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

SUMO Contributors: SUMO - Simulation of Urban MObility. Online:
www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_
read-41000/ (2015). Accessed 11. January 2016

Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of
the 1975 International Conference on Cybernetics and Society, p. 409 (1975)

Dietrich, F., Koster, G., Seitz, M., von Sivers, I.: Bridging the gap: From cellular au-
tomata to differential equation models for pedestrian dynamics. Journal of Computa-
tional Science 5(5), 841-846 (2014). doi:10.1016/7.7jocs.2014.06.005

Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity
obstacles. The International Journal of Robotics Research 17(7), 760-772 (1998).
doi:10.1177/027836499801700706

Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body colli-
sion avoidance. Springer Tracts in Advanced Robotics 70, 3-19 (2011).
doi:10.1007/978-3-642-19457-3_1

Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual Tawaf: A Velocity-
Space-Based Solution for Simulating Heterogeneous Behavior in Dense Crowds,
chap. 1, pp. 181-209. Springer Science + Business Media (2013).
doi:10.1007/978-1-4614-8483-7_8

Seitz, M.J., Dietrich, F., Koster, G., Bungartz, H.J.: The superposition principle: A
conceptual perspective on pedestrian stream simulations. Collective Dynamics 1,
A2 (2016). doi:10.17815/CD.2016.2

Hartmann, D., Mille, J., Pfaffinger, A., Royer, C.: Dynamic medium scale naviga-
tion using dynamic floor fields. In: Weidmann, U., Kirsch, U., Schreckenberg, M.
(eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1237-1249. Springer Interna-
tional Publishing (2014). doi:10.1007/978-3-319-02447-9-102

Koster, G., Zonnchen, B.: Queuing at bottlenecks using a dynamic floor field for
navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014,
Transportation Research Procedia, pp. 344-352. Delft, The Netherlands (2014).
doi:10.1016/j.trpro.2014.09.029

Dias, C., Lovreglio, R.: Calibrating cellular automaton models for pedestri-
ans walking through corners. Physics Letters A 382(19), 1255-1261 (2018).
doi:10.1016/7j.physleta.2018.03.022

Ruggiero, L., Charitha, D., Xiang, S., Lucia, B.: Investigating pedestrian navigation
in indoor open space environments using big data. Applied Mathematical Modelling
62, 499-509 (2018). doi1:10.1016/7.apm.2018.06.014

Wolfram, S.: Statistical mechanics of cellular automata. Review of Modern Physics
55, 601-644 (1983). doi:10.1103/RevModPhys.55.601

www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://dx.doi.org/10.1016/j.jocs.2014.06.005
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1007/978-3-642-19457-3_1
http://dx.doi.org/10.1007/978-1-4614-8483-7_8
http://dx.doi.org/10.17815/CD.2016.2
http://dx.doi.org/10.1007/978-3-319-02447-9-102
http://dx.doi.org/10.1016/j.trpro.2014.09.029
http://dx.doi.org/10.1016/j.physleta.2018.03.022
http://dx.doi.org/10.1016/j.apm.2018.06.014
http://dx.doi.org/10.1103/RevModPhys.55.601

Vadere: An Open-Source Simulation Framework 31

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Seitz, M.J., Koster, G.: How update schemes influence crowd simulations. Jour-
nal of Statistical Mechanics: Theory and Experiment 2014(7), P07002 (2014).
doi:10.1088/1742-5468/2014/07/P07002

Was, J., Lubas, R.: Towards realistic and effective agent-based mod-
els of crowd dynamics. Neurocomputing 146, 199-209 (2014).
doi:10.1016/7.neucom.2014.04.057

Okazaki, S.: A study of pedestrian movement in architectural space: part
1 pedestrian movement by the application of magnetic models. Trans-
actions of the Architectural Institute of Japan 283, 111-119 (1979).
doi:10.3130/aijsaxx.283.0_111

Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian
model by evolutionary adjustment to video tracking data. Advances in Complex
Systems 10, 271-288 (2007). doi1:10.1142/50219525907001355

Moussaid, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking
behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS
ONE 5(4), 10047 (2010). doi:10.1371/journal .pone.0010047

Yu, WJ., Chen, R., Dong, L.Y.,, Dai, S.Q.: Centrifugal force model
for pedestrian dynamics. Physical Review E 72, 026112 (2005).
doi:10.1103/PhysRevE.72.026112

Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnar-
farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-
352 (2005). doi:10.1177/0037549705052772

Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: Metaxas, D., Popovic, J. (eds.) ACM SIGGRAPH/Eu-
rographics Symposium on Computer animation (2007)

Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model
can reproduce experimental data of pedestrian flows in normal conditions. Phys-
ica A: Statistical Mechanics and its Applications 388(17), 3600-3608 (2009).
doi:10.1016/5.physa.2009.05.027

Kretz, T., GroBe, A., Hengst, S., Kautzsch, L., Pohlmann, A., Vortisch, P.: Quickest
paths in simulations of pedestrians. Advances in Complex Systems 10, 733-759
(2011)

Johansson, F., Duives, D., Daamen, W., Hoogendoorn, S.: The many
roles of the relaxation time parameter in force based models of pedes-
trian dynamics. Transportation Research Procedia 2, 300-308 (2014).
doi1:10.1016/7.trpro.2014.09.057. The Conference on Pedestrian and
Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Nether-
lands

http://dx.doi.org/10.1088/1742-5468/2014/07/P07002
http://dx.doi.org/10.1016/j.neucom.2014.04.057
http://dx.doi.org/10.3130/aijsaxx.283.0_111
http://dx.doi.org/10.1142/S0219525907001355
http://dx.doi.org/10.1371/journal.pone.0010047
http://dx.doi.org/10.1103/PhysRevE.72.026112
http://dx.doi.org/10.1177/0037549705052772
http://dx.doi.org/10.1016/j.physa.2009.05.027
http://dx.doi.org/10.1016/j.trpro.2014.09.057

32 B. Kleinmeier and B. Zonnchen et al.

[68] Chraibi, M.: Oscillating behavior within the social force model. arXiv (2014)

[69] Conway, R.W., Johnson, B.M., Maxwell, W.L.. Some problems of dig-
ital systems simulation. Management Science 6(1), 92-110 (1959).
doi:10.1287/mnsc.6.1.92

[70] Hall, E.T.: The Hidden Dimension. Anchor (1990). URL www.worldcat.org/
isbn/0385084765

[71] von Sivers, LK.M.: Modellierung sozialpsychologischer Faktoren in Personen-
stromsimulationen - Interpersonale Distanz und soziale Identititen. Ph.D. thesis,
Technische Universitdt Miinchen (2016). URL https://mediatum.ub.tum.
de/doc/1303742/1303742.pdf

[72] Zoénnchen, B.: Navigation around pedestrian groups and queueing using a dynamic
adaption of traveling. Bachelor’s thesis, Hochschule Miinchen (2013)

[73] Seitz, M.J., Dietrich, F., Koster, G.: The effect of stepping on pedestrian trajecto-
ries. Physica A: Statistical Mechanics and its Applications 421, 594-604 (2015).
doi:10.1016/j.physa.2014.11.064

[74] Koster, G., Zonnchen, B.: A queuing model based on social attitudes.
In: Knoop, VL., Daamen, W. (eds.) Traffic and Granular Flow ’15, pp.
193-200. Springer International Publishing, Nootdorp, the Netherlands (2016).
doi:10.1007/978-3-319-33482-0. 27-30 October 2015

[75] Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral
model. ACM SIGGRAPH Computer Graphics 21(4), 25-34 (1987).
doi1:10.1145/37402.37406

[76] Wolinski, D., J. Guy, S., Olivier, A.H., Lin, M., Manocha, D., Pettré, J.: Parame-
ter estimation and comparative evaluation of crowd simulations. Comput. Graph.
Forum 33(2), 303-312 (2014). doi:10.1111/cgf.12328

[77] Korhonen, T., Hostikka, S., Helidvaara, S., Ehtamo, H., Matikainen, K.J.: Integra-
tion of an agent based evacuation simulation and state-of-the-art fire simulation. In:
Proceedings of the 7th Asia-Oceania Symposium on Fire Science & Technology,
Hong Kong (2007). URL https://pdfs.semanticscholar.org/5eal/
8bl63221a6e736a47a0df9%e785efbcfodf64d.pdf

[78] Kielar, PM., Borrmann, A.: Modeling pedestrians’ interest in locations: A concept
to improve simulations of pedestrian destination choice. Simulation Modelling Prac-
tice and Theory 61, 47-62 (2016). doi:10.1016/7.simpat.2015.11.003

[79] Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent Development and
Applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3&4), 128-138 (2012)

http://dx.doi.org/10.1287/mnsc.6.1.92
www.worldcat.org/isbn/0385084765
www.worldcat.org/isbn/0385084765
https://mediatum.ub.tum.de/doc/1303742/1303742.pdf
https://mediatum.ub.tum.de/doc/1303742/1303742.pdf
http://dx.doi.org/10.1016/j.physa.2014.11.064
http://dx.doi.org/10.1007/978-3-319-33482-0
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1111/cgf.12328
https://pdfs.semanticscholar.org/5ea1/8b163221a6e736a47a0df9e785efbcf6df64.pdf
https://pdfs.semanticscholar.org/5ea1/8b163221a6e736a47a0df9e785efbcf6df64.pdf
http://dx.doi.org/10.1016/j.simpat.2015.11.003

Vadere: An Open-Source Simulation Framework 33

[80] McGrattan, K., Hostikka, S., McDermott, R., Jason, F., Vanella, M.: Fire Dy-
namics Simulator User’s Guide. National Institute of Standards and Technol-
ogy and VTT Technical Research Centre of Finland, sixth edition edn. (2019).
doi1:10.6028/NIST.SP.1019

[81] Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free first order model for pedes-
trian dynamics. In: Traffic and Granular Flow ’15. Nootdorp, the Netherlands
(2015). URL https://arxiv.org/abs/1512.05597. 27-30 October 2015

[82] Graf, A.: Automated Routing in Pedestrian Dynamics. Master’s thesis,
Fachhochschule Aachen (2015). URL http://Jjuser.fz—-juelich.de/
record/276318

[83] Hanik, F.: The kiss principle. Online: https://people.apache.org/
~fhanik/kiss.html (2006). Accessed 05. November 2018

[84] Gipps, P.: The role of computer graphics in validating simulation mod-
els. Mathematics and Computers in Simulation 28(4), 285-289 (1986).
doi:10.1016/0378-4754(86)90049-2

[85] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, MA (1994)

[86] Zonnchen, B., Koster, G.: A parallel generator for sparse unstructured meshes
to solve the eikonal equation. Journal of Computational Science (2018).
doi:10.1016/73.J0cs.2018.09.009

[87] Popper, K.: The Logic of Scientific Discovery (1934, 1959). Routledge Classics,
London and New York (2002)

[88] JUnit test tool, http://www.junit.org. http://www. junit.orqg. Accessed:
2018-11-07

[89] ISO: Road vehicles — Functional safety — Part 6: Product development at the soft-
ware level (2018). URL https://www.iso.org/standard/68388.html

[90] RiIMEA: Guideline for Microscopic Evacuation Analysis. RiIMEA e.V., 3.0.0 edn.
(2016). URL http://www.rimea.de/

[91] Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in
pedestrian fundamental diagrams of straight corridors and t-junctions. Jour-
nal of Statistical Mechanics: Theory and Experiment 2011(06), P06004 (2011).
doi1:10.1088/1742-5468/2011/06/P06004

[92] GitLab Contributors: GitLab. Online: https://about.gitlab.com/ (2018).
Accessed 26. October 2018

http://dx.doi.org/10.6028/NIST.SP.1019
https://arxiv.org/abs/1512.05597
http://juser.fz-juelich.de/record/276318
http://juser.fz-juelich.de/record/276318
https://people.apache.org/~fhanik/kiss.html
https://people.apache.org/~fhanik/kiss.html
http://dx.doi.org/10.1016/0378-4754(86)90049-2
http://dx.doi.org/10.1016/j.jocs.2018.09.009
http://www.junit.org
https://www.iso.org/standard/68388.html
http://www.rimea.de/
http://dx.doi.org/10.1088/1742-5468/2011/06/P06004
https://about.gitlab.com/

34 B. Kleinmeier and B. Zonnchen et al.

A. Appendix

A.1. Obtain lines of code (LOCs) for different simulators

The lines of code exclude unit tests, blank lines and comments. The “cloc” software
tool® version 1.74 was used to obtain the lines of code. The hash contained in the
--report-file indicates the analyzed simulator version according to the Git version
control system.

FDS+Evac:
cloc
——report-file=£fds-5c0149698-cloc_report.txt

JuPedSim:
cloc
——exclude-dir=Utest
——exclude-lang=XML
——report-file=jupedsim-d942c947-cloc_report.txt
jpscore/ jpseditor/ jpsreport/ jpsvis/

Menge:
cloc
——match-d=src
——exclude_dir=test
——report—-file=menge-menge—-c3eb429-cloc_report.txt

MomenTUMvV2 :
cloc
——exclude-dir=momentum—-documentation, tests
——exclude—-lang=HTML, CSS, XML
——report-file=momentumv2-55c8f3a-cloc_report.txt

SUMO:
cloc
——match-d=src
——report—-file=sumo-1.0.l-cloc_report.txt

Vadere:
cloc
—-—exclude-dir=tests
—-—exclude-1lang=JSON --report-file=vadere-87b4fe32-cloc_report.txt

3https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

	Introduction
	Overview of locomotion models and simulation frameworks
	Locomotion models
	Common ground for all locomotion models
	Cellular automata (CA)
	Force-based models
	Optimal steps model (OSM)
	Other locomotion models

	Existing simulation frameworks

	Vadere: A framework to compare different locomotion models
	Vadere for users
	Vadere: overview
	Vadere: graphical user interface
	Vadere: locomotion models supported in Vadere

	Vadere for developers
	Vadere: architecture
	The simulation loop
	Including different locomotion models using the strategy pattern

	Quality assurance: Unit testing and continuous integration
	Unit Testing
	Continuous integration and deployment

	Conclusion
	Appendix
	Obtain lines of code (LOCs) for different simulators

