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Abstract It has been argued that the speed-density diagram of pedestrian movement has
an inflection point [1] (p. 3, “Domain I: ... At low densities there is a small and increasing
decline of the velocity ... Domain III: ... For growing density the velocity remains nearly
constant.”). This inflection point was found empirically in investigations of closed-loop
single-file pedestrian movement.

The reduced complexity of single-file movement does not only allow a higher pre-
cision for the evaluation of empirical data, but it also significantly simplifies analytical
considerations. This is especially true if one assumes homogeneous conditions, i.e. ne-
glects temporal variations (consider time averages, neglect stop-and-go waves), individual
differences of pedestrians (all simulated pedestrians have identical parameters) and inves-
tigates only steady-state (not the initial phase). As will be shown in this contribution
one then can make a transition from the microscopic to a continuous and macroscopic
perspective.

Building on that it will be shown that certain (common) variants of the Social Force
Model (SFM) do not produce an inflection point in the speed-density diagram if – as-
suming periodic boundary conditions – infinitely many pedestrians contribute to the force
computed for one pedestrian. It will furthermore be shown that if – in said 1d move-
ment situation – one only considers nearest neighbors for the computation of the inter-
pedestrian forces the Social Force Model in the continuous description results in the so
called Kladek formula for the speed-density relation. Since the Kladek formula exhibits
the desired inflection point this observation is used as a motivation for an extension of
the Social Force Model which allows to transform the continuous description of the SFM
continuously to the Kladek formula and which also exhibits the inflection point in the
speed density relation. It will be shown then, that this extended SFM yields astonishingly
similar speed density relations as the original SFM when only a fixed limited number of
(nearest) pedestrians are considered in the computation of the inter-pedestrian force.
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Finally it will be discussed, if also the description of the speed-density diagram for (mo-
torized, four-wheel) vehicular and/or bicycle traffic could benefit from these measures.

Keywords Pedestrians · speed density relation · Social Force Model · Kladek Formula

1 Introduction I: Empirical Data on Pedestrians’
Speed-Density Relation

In the course of recent years a number of experiments have been conducted in which
pedestrians walk single-file in a closed loop [1–5]. Having a different number of pedes-
trians in the loop different densities are prepared. In a section of the loop density – in this
case: line density [persons / m] – and speed are measured. Fig. 1 shows the experimental
setup from which most data stems. There were experiment runs in which the loop was
larger and more pedestrians participated, but the principle was always the same.

Figure 1 Experimental setup. Source: Figures 2 and 3 of [1]

The experiment has been conducted at various places around the world. Fig. 2 shows
the results for India and Germany. With the free speeds plotted in this diagram the ex-
istence of an inflection point and even more so a positive curvature at high densities is
obvious, although the density of the inflection point can only be estimated roughly.

Whereas Fig. 2 clearly shows that differences between India and Germany were found,
the loop size (corridor length) and the profession of participants did not make a difference,
at least not an obvious one, see Fig. 3.

Where free speeds are not shown in a diagram (e.g. Fig. 3) and data for very small
densities is missing as well the existence of an inflection point may not be immediately
obvious, however, assuming typical free speeds it becomes clear that it must exist, and
even more important the curvature at high densities is without doubt positive. This holds
independently of the measurement method, see Fig. 4.

Furthermore the discussion in section 2 of [1] – see Fig. 5 – indicates that the existence
of an inflection point is common sense and even more so that for – at least moderately
– high densities the curvature of the flow density relation is positive. If there is in fact a
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Figure 2 Speed density diagram for India (left) and Germany (right). Source: Figure 5 of [2]

Figure 3 Speed density diagram for different loop sizes and professions in India (left) and Germany
(right). In India the participants in both experiments were students, in Germany the partici-
pants in the short loop experiment were students, the participants in the long loop were soldiers.
Sources: left: Figure 7 of [2]; right: Figure 1 of [5]

second inflection point at very high densities as shown in Fig. 5 or if speed approaches
zero nearly asymptotically as Fig. 4 indicates will not be discussed in this contribution.
Note that the speed-density diagram of Weidmann [6, 7] is a summary of many different
measurements, including not only single-file measurement and even bi-directional flow
investigations, which may have contributed to the depicted course of the average function
at high densities.

Weidmann approximated the speed-density diagram with the so called Kladek formula
which will be discussed in the next section.
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Figure 4 Speed density diagram created from the same data as in Fig. 3 (right, soldiers), but with different
evaluation methods. On the left side the raw data is evaluated using the Voronoi method, on the
right side a snap shot of all participants in the whole loop is taken at one point in time (resp.
two frames) and speeds are measured whereas for density the global average density is used.
Sources: left: Figure 3 of [3]; right: Figure 6 of [4]

Figure 5 Fundamental diagram according to Weidmann [6, 7] as given and discussed in [1].

2 Introduction II: the Kladek Formula

In 1966 Kladek [8] suggested the following equation as macroscopic function to describe
the relation between average momentary speed v̄m and density ρ of motorized urban road
traffic:

v̄m = v̄ f

(
1− e−γ

(
1
ρ
− 1

ρmax

))
(1)
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with v̄ f as free speed, ρmax as maximum density where speed becomes zero, and γ a free
parameter to be calibrated. The functional form was used before by Newell [9] for an
optimal velocity car-following model.

If speed is expressed in fraction f of the free speed v̄ f and density as fraction x of the
maximum (i.e. stand still) density equation (Eq. 1) reduces to

f (x) = 1− e−a( 1
x−1) (2)

leaving only one free parameter – a – to fit the function with empirical data. The relation
between parameter a in Eq. 2 and parameter γ in Eq. 1 is γ = aρmax.

Concerning the properties of the Kladek formula, we first note that it has an inflection
point which is located – for Eq. 2 – at xi = a/2.

In their text book Lohse and Schnabel [10] point out that the Kladek formula has a num-
ber of favorable properties for example that one single formula covers the entire density
range giving free speed for zero density and zero speed for maximum density.

It is sometimes pointed out for road traffic that the maximum of the flow is located at
or near the speed drop in the speed density relation [11, 12]. For vehicular traffic this has
been achieved with piece-wise definitions of the speed-density diagram. For a smooth
and analytical function as the Kladek formula this means that the inflection point of the
speed-density relation – i.e. where the first derivative is most negative – has to be at the
the position of the maximum of flow1. For Eq. 2 this requirement translates into two
equations:

∂

∂x
(x f (x))|xc = 0 (3)

∂ 2

∂x2 f (x)|xc = 0 (4)

which fix the value of parameter a to a = 2− ln(3)≈ 0.901, leaving no more freedom for
calibration with empirical data. However, comparing the function with this value for a as
shown in Fig. 6 with the empirical data depicted in Fig. 2 to 4, suggests that this value
does not yield the closest approximation to empirical data.

Fig. 6 shows that for different values of parameter a the maximum in the flow-density
diagram can be on the left or on the right side of x = 0.5. Since usually in pedestrian
as well as vehicular traffic the maximum is located well on the left side it is interesting
to know the value of a for which the maximum is exactly at x = 0.5 and that is where
(1+ 2a) = ea, so a = −W−1(−0.5exp(−0.5))− 0.5 ≈ 1.256 with W−1() denoting the
lower real-valued branch of the Lambert W function.

As mentioned previously Weidmann applied the Kladek formula to describe the speed
density relation of uni-directional pedestrian flow. This led to the situation that – de-
spite Kladek having introduced the equation to describe urban vehicular flow – today the
Kladek formula is and has been applied predominantly for pedestrian dynamics and engi-
neering [13–28] with only few literature search results related to vehicular traffic [29].

1This is necessarily fulfilled, if the Gaussian function is used to describe the relation between speed and
density, compare [10].
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Figure 6 Speed density (left) and flow density (right) relations according to Eq. 2 for various values of
parameter a.

One might stumble here over the fact that Kladek’s system – urban road traffic – is es-
sentially one-dimensional, while Weidmann used the very same function to describe a 2d
system, as Weidmann does not at all limit the applicability to single-file movement. This
difference is reflected in the dimension of the density and consequently the dimension
of the constant γ in the exponent. The transfer from 1d to 2d is not trivial, neither for
microscopic nor for macroscopic modeling and data taking, since in a 2d system the lon-
gitudinal and lateral densities – i.e. measuring density on a rectangle that is extended in
the direction of movement vs. measuring it on a rectangle extended orthogonal to move-
ment – may be different and the conversion might be density-dependent itself. In this
work we rest our motivation on a single-file experiment of pedestrian dynamics. The 1d
starting point implies that we are more “in the vein of” Kladek than Weidmann although
our focus is on pedestrians. The Social Force Model was undoubtedly formulated to de-
scribe 2d systems, still one would of course expect from a 2d microscopic model that it is
able to reproduce movement dynamics of 1d situations as far as they can be prepared in
reality, as the experimenters in the referred experiments have done.

Weidmann’s parametrization of the Kladek formula to describe (two-dimensional) pedes-
trian dynamics is

v f = 1.34 m/s (5)
γ = 1.913 1/sqm (6)

ρmax = 5.4 1/sqm (7)

For the dimensionless form – and therefore at least formally also applicable in a one-
dimensional setting – the value of parameter a would be

a =
γ

ρmax
≈ 0.354 (8)

In a strict sense the fact that the Kladek formula is meant to describe average momen-
tary speed requires for calibration first, that to measure speed it has to be measured how
far pedestrians (or cars) move in a given, fixed, and very short time span, and second
that each (density/speed) data point has to be an average of measurements done within
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the same time span. To put it more graphically: one has to take two pictures separated
only by a very short time span and measure in both how far pedestrians or cars moved.
The average of these translations divided by the time between the two pictures gives the
speed and the density results from the number of cars and the length of the observed road
section. To gain low-noisy data one obviously needs a large measurement section such
that many entities contribute to one data point. Traffic on that section at the time of mea-
surement has to be homogeneous and in steady-state. Clearly collecting a lot of – in the
sense of these requirements – high quality data is difficult.

3 The Social Force Model for Steady-States in Single-File
Movement

The circular specification of the Social Force Model [30] is defined as2:

~̈xα(t) =
~v0α −~̇xα(t)

τα

+ Ãα ∑
β

w(~xα(t),~xβ (t),~̇xα(t),λα)e
−
|~x

β
(t)−~xα (t)|−Rα−R

β

Bα êαβ (9)

with

w(~xα(t),~xβ (t),~̇xα(t),λα) = λα +(1−λα)
1+ cos(θαβ (~xα(t),~xβ (t),~̇xα(t)))

2
(10)

where v0α is the desired speed of pedestrian α . Ãα > 0, Bα > 0, 0≤ λα ≤ 1, and τα > 0
are parameters of the model. R denotes the body radius of a pedestrian. êαβ points
from pedestrian β on pedestrian α . ~x is the position of a pedestrian and dots mark time
derivatives (i.e. speed and acceleration). The sum runs over all – potentially infinitely
many – pedestrians in a simulation scenario. Function w() is there to suppress forces
acting from behind. Within it θαβ is the angle between pedestrian α’s velocity vector and
the line connecting pedestrians α and β .

From here on we assume that parameters Ã, B, λ , τ R, and v0 have identical value
for all pedestrians, so we omit the indices. This allows to combine Ã and R into a new
parameter:

A = Ãe
2R
B (11)

Since it is obvious which properties are time dependent, we also omit the “(t)”. Then
Eq. 9 can be written for the one-dimensional case:

ẍα =
v0− ẋα

τ
+A∑

β

w(xα ,xβ ,λ )e
−

d
αβ

B (12)

dαβ = |xβ − xα | (13)
w(xα ,xβ ,λ ) = λ if xβ − xα < 0 (14)
w(xα ,xβ ,λ ) = −1 if xβ − xα > 0 (15)

2We neglect here forces from walls from the beginning since we are anyway working towards the one-
dimensional case.
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with the additional assumption that for all pedestrians and times ẋ > 0. This can be done
without limiting generality since we are not interested in possible oscillation phenom-
ena far from equilibrium which might occur even if all desired speeds point to the right
(v0 > 0) [31], but here we are only interested in the stationary state of the system (strong
equilibrium).

Elliptical specification II is a variant of the Social Force Model where the force between
pedestrians – in addition to the mutual distance – also depends on the relative velocity
of pedestrians α and β . For the full definition we refer to [32] and here just give the
simplified version parallel to the circular specification above:

ẍα =
v0− ẋα

τ
+a∑

β

w(xα ,xβ ,λ )
d̄aαβ

d̄gαβ

e−
d̄gαβ

b (16)

d̄aαβ =
dαβ +d f αβ

2
(17)

d̄gαβ =
√

dαβ d f αβ (18)

d f αβ = |xβ − xα +(ẋβ − ẋα)∆t| (19)
dαβ = |xβ − xα | (20)

w(xα ,xβ ,λ ) = λ if xβ − xα < 0 (21)
w(xα ,xβ ,λ ) = −1 if xβ − xα > 0 (22)

with the new parameter ∆t which indicates the time to which the current evolution of
distance between α and β is extrapolated linearly to an expected future distance d f αβ .
d̄aαβ and d̄gαβ are the algorithmic and geometric mean between current and expected
future distance dαβ and d f αβ .3

If – as in the scenario discussed in this work – pedestrians α and β have the same
velocity or if ∆t = 0 it is d̄gαβ = d̄aαβ = d f αβ = dαβ and elliptical specification II gives
the same force for α as the circular specification.

Now we investigate the steady state of this – in fact both - model(s). Steady-state means
that the speeds and distances remain constant and consequently acceleration is zero for
all pedestrians. With the left side of Eq. 12 being zero we can easily compute the steady
state speed without having to solve a differential equation:

ẋα = v0 + τA∑
β

w(xα ,xβ ,λ )e
−

d
αβ

B (23)

As we chose that the parameters for all pedestrians are equal and the system has peri-
odic boundary conditions or is infinitely large, all distances between neighboring pedestri-
ans are equal. Then necessarily the distance (center point to center point) from pedestrian
α to the n next neighbor βn can then be written as:

dαβn = nd0 (24)

3There is an additional restriction: if within the time horizon ∆t according to the linear extrapolation
pedestrians α and β would walk through each other, the force is zero. For our further considerations
this case is not relevant.
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If we resolve the w() function into both directions (w() =−1 for all pedestrians ahead
and w() = λ for all pedestrians behind we can rewrite Eq. 23 more explicitly with the sum
running over natural numbers not pedestrians:

ẋα = v0− (1−λ )τA
∞

∑
n=1

e−
nd0
B (25)

Since d0 and B both necessarily are positive it is e−
d0
B < 1 and the sum is the geometric

series with the well known result

ẋα = v0− (1−λ )τA

(
1

1− e−
d0
B

−1

)
(26)

= v0− (1−λ )τA
1

e
d0
B −1

(27)

= v0− (1−λ )τA
1

e
1

Bρ −1
(28)

where ρ is the line density of pedestrians ρ = 1/d0.4

With appropriately chosen values for parameters v0, λ , τ A, B Eq. 28 should be able
to reproduce the empirical speed-density diagram as shown in Fig. 2 to 4. Of course not
each single data point, but as a function it should approximately match average functions
computed from the empirical point clouds with an appropriate method. There is more than
one such appropriate method and consequently in detail more than one average function
can be extracted from a cloud of empirical data point. However, qualitative properties like
the existence of an inflection point will (should) result from each such method. Therefore
the speed density relation in Eq. 28 computed for/from the Social Force Model should
also yield an inflection point. So we compute the second density derivative of the speed
function of Eq. 28

v(ρ) = v0− (1−λ )τA
1

e
1

Bρ −1
(29)

∂v(ρ)
∂ρ

= −(1−λ )τA
e

1
Bρ

Bρ2(e
1

Bρ −1)2
(30)

∂ 2v(ρ)
∂ρ2 = (1−λ )τAe

1
Bρ
(2Bρ−1)e

1
Bρ − (2Bρ +1)

B2ρ4(e
1

Bρ −1)3
(31)

and test if it is zero for some density ρi:

(2Bρi−1)e
1

Bρi − (2Bρi +1) = 0 (32)

This does not have a solution, but the left side of the equation is always negative and only
approaches zero asymptotically for ρi→ ∞.

4This is the point where working with the SFM in 2d would take a different direction, since it would be
rather

√
ρ = 1/d0 – if a d0 could be defined at all – and the following math might yield different results.
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We note the first definite result of this work:

Result 1: Neither the circular specification nor the
elliptical specification II of the Social Force Model as
originally defined produce an inflection point in the
speed density relation for homogeneous steady-state
one-dimensional movement.

4 The Social Force Model for Steady-States in Single-File
Movement with only Nearest Neighbor Interaction

This result naturally raises the question if in the face of empirical data it is time to sing the
“Requiem for the Social Force Model” or if it can be resurrected. The fact that Eq. 32 can
be solved at least asymptotically is sufficient motivation to search for model modification
that lead to a solution at finite values for ρi. Indeed different solutions can be found,
probably the simplest is described in this section.

We reconsider Eq. 23 and investigate a variant of the model where not all pedestrians,
but only the nearest neighbors – the one in front and the one at the rear – exert a force on
pedestrian α . This leads to

ẋα = v0− (1−λ )τAe−
1

Bρ (33)

We note that Eq. 33 is different from Eq. 1 only through parametrization. The functional
form is identical. The parameter equivalents are

v0 = v f (34)
1
B

= γ (35)

(1−λ )τA
v0

= e
γ

ρm (36)

We note as second result of this work:

Result 2: If the circular specification or the elliptical
specification II of the Social Force Model are mod-
ified such that only nearest neighbors exert a force
onto each other, then the speed density relation for ho-
mogeneous steady-state one-dimensional movement
is given by the Kladek formula. Therefore the Kladek
formula is a macroscopic description of a modified
Social Force Model.

Since the Kladek formula has the inflection point as desired, so does the SFM with
only nearest-neighbor interactions. This matches in approach and result with [33] where
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Figure 7 Speed-density (left) and flow-density (right) relations if a different number of neighbors (1, 2, 4,
8, ∞) is considered to both sides for the computation of forces in the Social Force Model. The
plots are based on the dimensionless variants of equations and it is a = 0.2.

also a nearest-neighbor model produced an inflection point and positive curvature at high
densities in the speed-density relation.

Thus if one trusts the Kladek formula on a macroscopic level it is at least beneficial
if not required for any (force-based) model of pedestrian dynamics if it reduces to the
circular specification of the Social Force Model when uni-directional single-file steady-
state movement with a homogeneous population is described and simulated. An example
for which this is not the case is elliptical specification I of the Social Force Model [32,
34,34] which frequently is termed the Social Force Model. For elliptical specification I it
is not possible to give a closed analytical form of the speed-density relation. Furthermore
the resulting implicit speed-density equation for single-file uni-directional steady state
homogeneous movement raises the suspicion that – at least for certain parameter values
– speeds above the desired speed may occur for finite densities. In any case elliptical
specification I is not covered by this work and would need a separate treatment.

If in the Social Force Model next and next-to-next neighbors exert a force onto each
other the resulting (dimensionless) speed density relation modifies to

f (x) = 1− e−
a
x + e−2 a

x

e−a + e−2a (37)

and the condition for the inflection point modifies to

e−
a
xi =− 2xi−a

4xi−4a
(38)

which for example for a parameter value a = 1 is solved by xi ≈ 0.65 and which has
solutions xi < 1 as long as 0 < a <≈ 1.53. Analytical treatment becomes more difficult,
but one can easily plot speed density relations that result from taking an arbitrary number
of neighbors (in both directions) into account. Fig. 7 shows some of them.

Considering N nearest neighbors for the calculation of the forces implies that in fact
there are N variants of the original Social Force Model (specifications) – one may call
these briefly “SFMn”. And all of them – except for N = 1 – motivate a different modifica-
tion and extension of the Kladek formula. The first thought might be that this offers a lot
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of freedom for calibration and that with sufficient empirical data available one would be
able to pick the “right” value of N for a realistic variant of the Kladek formula as well as
a realistic variant of the Social Force Model. However two arguments speak against this:
first – at least with a second thought – it is intuitively clear that SFM parameters obtained
from calibration in a really crowded scene, maybe resulting in a relatively high value for
N might not necessarily work well for simulations when just two pedestrians meet and
evade. Second, even if various calibration processes would give a consolidate result for N
– say N = 42 – the question would be “Why 42?”. There is no intuitively comprehensi-
ble argument that could support the result of the calibration; no matter what the resulting
number for N was. So, while considering only a limited number of pedestrians for the
computation of forces can be seen as a step forward, it is nevertheless desirable to find a
different approach.

5 The Social Force Model for Steady-States in Single-File
Movement with Neighborhood Degree dependent Force
Suppression

As a first step we write Eq. 33 seemingly unnecessarily complicated as

ẋα = v0− (1−λ )τA
1

e
1

Bρ −0
(39)

In this form we note that the only difference between Eq. 28 and 39 – so between the
original formulation where infinitely many pedestrians exert a force on α and the nearest
neighbor variant – is only that in the first case there is a “1” and in the second case a “0”
in the denominator.

Having written the equations in this way the natural question is “What if instead of the
zero or one in Eq. 28 and 39 we write there some 0 < k < 1?”:

ẋkα = v0− (1−λ )τA
1

e
1

Bρ − k
(40)

respectively in dimensionless form:

f (x)k(ρ) = 1− ea− k
e

a
x − k

(41)

This modifies the second derivative:

vk(ρ) = v0− (1−λ )τA
1

e
1

Bρ − k
(42)

∂vk(ρ)

∂ρ
= −(1−λ )τA

e
1

Bρ

Bρ2(e
1

Bρ − k)2
(43)

∂ 2vk(ρ)

∂ρ2 = (1−λ )τAe
1

Bρ
(2Bρ−1)e

1
Bρ − k(2Bρ +1)

B2ρ4(e
1

Bρ − k)3
(44)
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k Bρi k Bρi k Bρi

0.0 0.500 0.90 0.981 0.99 2.049
0.1 0.515 0.91 1.013 0.999 4.379
0.2 0.531 0.92 1.051 0.9999 9.416
0.3 0.551 0.93 1.096 0.99999 20.28
0.4 0.576 0.94 1.151 0.999999 43.68
0.5 0.606 0.95 1.219 0.9999999 94.10
0.6 0.646 0.96 1.309 0.99999999 202.7
0.7 0.703 0.97 1.435 0.999999999 436.8
0.8 0.793 0.98 1.635 0.9999999999 941.0

Table 1 Numerical solutions for the value ρi of the inflection point with regard to various values for
parameter k. Values computed with [35]

Figure 8 Speed-density (left) and flow-density (right) relations of the k-extended Social Force Model for
various values of parameter k. The plots are based on the dimensionless variants of equations
and it is a = 0.2.

For 0≤ k < 1 the new equation to solve is

(2Bρi−1)e
1

Bρi − k(2Bρi +1) = 0 (45)

and it has a solution. For k = 0 it is obviously ρi = 1/(2B) (in agreement with the dis-
cussion of the Kladek formula). For other values of k the solution needs to be computed
numerically. Tab. 1 gives some values for Bρi.

The introduction of parameter k produces the desired inflection point in the speed-
density diagram. See Fig. 8.

Next we try to find an interpretation for that introduction which so far was of purely
mathematical-technical nature. We write Eq. 42 in a slightly different manner

vk(ρ) = v0− (1−λ )τA
1
k

1

e
1

Bρ

k −1
(46)
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and undo the summation of the geometric series with k “on the back” of the exponential
function

vk(ρ) = v0− (1−λ )τA
1
k

∞

∑
n=1

kne−
n

Bρ (47)

= v0− (1−λ )τA
∞

∑
n=1

kn−1e−
n

Bρ (48)

= v0− (1−λ )τA
∞

∑
n=1

kn−1e−n d0
B (49)

(50)

In the process of simplifying the SFM with Eq. 24 it was assumed that pedestrians are
equally spaced (nd0 = dαβ ). Now we drop this simplification, allowing varying distances,
and define a new, extended model. This new model reduces to the macro relations of
Eq. 42 and 48 if the simplifying assumptions of equilibrium and equal spacing are made.
The mathematical transformation in this step is trivial (nd0 is replaced by dαβ ), the main
change is that the sum has to run over pedestrians β not over numbers n. Nevertheless a n
remains in the sum, but now it is a n associated with a particular pedestrian β and therefore
denoted nβ . It is important to keep in mind that the value of nβ cannot be determined by
looking at pedestrians α and β alone, but that one needs to know the positions of all other
pedestrians as well.

ẍ =
v0− v

τ
− (1−λ )A

∞

∑
β

knβ−1e−
d
αβ

B (51)

This is easy to interpret: the next neighbors of α exert a force on α unmodified com-
pared to the original SFM. The second next neighbors exert a force which is suppressed
by a factor k (always compared to the original model without parameter k). The force
from the next to next to next nearest neighbors is suppressed by a factor of k2 and so on.
This implies for example that if we take out each second pedestrian from a simulation
and the next to next nearest neighbor becomes the next nearest neighbor the force from
this new nearest neighbor is larger than before when s/he was just the next to next nearest
neighbor although the distance to α is the same as before.

One can argue that such a modification makes intuitively sense. If two pedestrians
approach “me” independently and the first remote pedestrian overtakes and becomes the
closest one “my” awareness is shifted from the former to the new nearest neighbor and
that would have an impact on my velocity changes, i.e. acceleration, i.e. forces. This
intuitive comprehensibility of the model extension adds to the pleasure of having gained
the desired inflection point. Fig. 9 summarizes this visually.
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Figure 9 From the upper to the lower picture density is reduced by half. If we ask what might be the
force(s) on the person marked with an arrow, we may intuitively argue that the person who is
the second next (brown hair, violet shirt, gray trousers) in the upper picture has a higher impact
on the arrow-marked guy at the moment the blonde-blue-white lady disappears and he becomes
the next nearest neighbor, although the distance between the two is exactly the same as before.
This is exactly what the k extension of the SFM does in this case: the k < 1 factor on the force
disappears and the force value increases.

Result 3: Suppressing the force from each pedestrian
in the sequence ordered by distance from the pedes-
trian for whom forces are calculated with an addi-
tional factor 0 < k < 1 produces an inflection point
in the resulting speed-density relation and can as a
model extension be motivated intuitively.

Further favorable properties of this model extension are that it can be combined with ar-
bitrary specifications of the SFM or in general force-based models as for example [36–39]
and that the new parameter k re-opens the possibility for calibration even if one requires
that the maximum of the flow be at same density as the inflection point in the speed-
density relation.

We would like to emphasize that the introduction of parameter k as extension of the
Social Force Model brings a major conceptual change. Without it forces of various pedes-
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trians superpose, i.e. the force of one pedestrian β1 on some pedestrian α does not depend
on if there are other pedestrians βi and if they are there where they are located and with
which velocity they move. This changes with parameter k. Now one has to know the local
distribution of all pedestrians before one can compute the force of one pedestrian on an-
other one. Forces do not superpose anymore. Instead the extended model – let us briefly
call it “SFMk” – is rather described by Sherif’s famous description of social systems: “the
properties of any part are determined by its membership in the total functional system.”
[40]. In this sense the SFMk structurally bears some similarities to another extension of
the Social Force Model – namely the dynamic potential [41–44] – where the desired direc-
tion of pedestrians is computed such that they walk into the direction of earliest expected
arrival, for this considering the distribution and movement state of all pedestrians in a
holistic way. A difference, however, between SFMk and the dynamic potential is that in
SFMk it is exactly known which pedestrian βi contributes what to the effect on the move-
ment of pedestrian α . This is not the case for the dynamic potential. We would therefore
call the dynamic potential a mesoscopic or mean-field or holistic modeling element while
the SFMk is non-superposing but non-holistic and entirely microscopic.

6 Comparing the Model Modifications SFMn and SFMk

Concerning the relation and difference of SFMn and SFMk models we find for once that
for a given value of a for each value of N there is a narrow range of k values with which
the speed-density relations match closely, but never exactly. It is always the case that
for small densities the SFMn model and for high densities the SFMk model gives higher
speeds; see Fig. 10. Still the differences are marginal such that for practical applications
corresponding models should always be exchangeable as far as only the speed-density
relation is concerned. Tab. 2 gives pairs of corresponding values for N and k for three
different values of parameter a. Second, there are values for k for which – again for a
given value of parameter a – the speed-density relation of the SFMk model lies (almost)
entirely between two “neighboring” SFMn models (N and N + 1), thereby giving the
impression that for small densities the SFMk model gives rather speeds like the SFMn
model with smaller N and for higher densities like the one with N +1. See Fig. 11.

7 Comparison of SFMk to Empirical Data

Before we do the comparison we would like to state its limitations.
There is first the obvious difference between the theoretical system which was assumed

to be infinitely large and the necessarily finite size laboratory system which produced
empirical data. Arguing that the closed-loop laboratory system can straightforwardly be
interpreted as a system with periodic boundary conditions would imply for a simulation
with the Social Force Model that a person exerts some force on itself. He/she would do so
infinitely often from the front with a decelerating effect and infinitely often from behind
with an accelerating effect. For a single pedestrian alone in the loop of length L this would
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Figure 10 Left: Speed-density relation for SFMn with N = 4 and SFMk with k = 0.72. Right: Difference
and relative difference between both. The plots are based on the dimensionless variants of
equations and it is a = 0.2.

N k, with a = 0.02 k, with a = 0.2 k, with a = 2.0
1 0.00 0.00 0.00
2 0.35 0.42 0.90
3 0.53 0.63 1.00
4 0.64 0.72 1.00
6 0.75 0.84 1.00
8 0.81 0.90 1.00
10 0.85 0.94 1.00
12 0.87 0.96 1.00
16 0.91 0.98 1.00
20 0.93 0.99 1.00
∞ 1.00 1.00 1.00

Table 2 Approximate corresponding values for N and k for the SFMn and SFMk models with a = 0.02,
a = 0.2, and a = 2.0.

Figure 11 Left: Speed-density relation for two SFMn models (N=2 and N=3) and one SFMk model
(k = 0.6). Right: Differences between the SFMk and the SFMn models. The plots are based
on the dimensionless variants of equations and it is a = 0.2.
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imply that by self-interaction the walking speed would be

v
v0

= 1− (1−λ )τA

e
L
B −1

(52)

with for example λ = 0.1, τ = 0.5 s, A = 10 m/s2, B = 3 m, and L = 17.3 m the pedestrian
would slow down by 1.4%. For typical parameters and the size of the experiment the effect
is small, but we need to keep in the back of the mind that the assumption that the infinite
and the closed system correspond implies already that we also assume that interactions
between pedestrians in fact are of limited range. If they were not, if another pedestrian
10 to 20 m away and with a couple of people in between would have a significant effect,
in reality it would make a difference if this other person is the same or a different person
than the person whom we are concerned about (for whom movement is calculated) and
then it would not be justified to compare results from finite size and closed, and open and
infinite systems. However, since the results for the short and the long loop as shown on
the right side of Fig. 3 match very closely, we may assume that already with the short
loop the experimenters implemented a system size which is large compared to relevant
pedestrian interaction distance, meaning that one can expect that increasing the size ever
further would not yield any different results, justifying in consequence our assumption.

Second, we will assume that the average of data, i.e. the central line through the clouds
of data points, corresponds to the stationary state of the continuous description. This
is of course not guaranteed, especially since it is not guaranteed that a stable stationary
state exists at all. The justification for this assumption would be made ex post: if sim-
ulating microscopically with parameter values that have been gained from matching the
continuous stationary description to the scattered empirical data produces realistic results
– better: more realistic results than parameter values used before – then the approach was
justified.

7.1 Comparison to Empirical Data of Pedestrians

The theory so far was straight forward and one might expect that calibration of the result-
ing equations at empirical data should be equally straight forward. However, there are four
issues: first, the theory assumes nonchalant that the average free speed and the maximum
density are known. Yet measuring a meaningful average speed near maximum density is
difficult or even impossible since one is faced with stop-and-go waves in pedestrian [5,45]
as well as vehicular traffic.

Second, also for all other densities the empirical data exhibits a wide scattering. One
might choose an averaging method that produces from the scattered empirical data unique
speed values for a number of density values, however since there are various such meth-
ods, the choice already bears some arbitrariness. Or one can fit the functions “cloud-
based” by eye-sight comparison. Lacking the original empirical data, in this section we
proceed with the second method. With this approach numerous functions can appear
equally well fitting and Fig. 12 shows that these functions may have quite different pa-
rameters.
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Figure 12 Four functions with different parameters displayed on the background of the left figure of
Fig. 4. Free speed and maximum density were not calibrated, but were fixed a priori to v0 =
1.25 m/s and ρmax = 2.5 1/m.

Third, there is few to none data available that has been collected and averaged in the
momentary, space-averaged way. None of the data referenced so far in this work fit this
requirement exactly. The speed data in Fig. 2 and 3 has been obtained by measuring the
time it took pedestrians to walk a fixed distance. In this way very low speeds are systemat-
ically underrepresented compared to a measurement where speed is measured by dividing
the distance pedestrians move in a fixed time and speed zero can never occur in contrast
to Kladek’s formula. The speed data in the left diagram of Fig. 4 has been obtained in the
latter way, but density data was not measured in the usual space-averaging way. The right
diagram in the same figure shows space-averaged data, but not stated explicitly if speeds
were measured with fixed ∆t or fixed ∆x. Definitely a problem is that a measurement was
triggered each time a pedestrian crossed position x = 0 which means that if density was so
high that no one could move no measurement was triggered. This implies that – although
data is space-averaged – small speeds are systematically suppressed compared to when
measurement is triggered externally. However, since overtaking is not possible in these
scenarios one can hope that the impact of the averaging method is rather small. Still one
has to bear the stated limitations in mind when interpreting the results of this section.

In Fig. 12 one of the four functions even has a negative value for parameter k. This
does not make sense with regard to the Social Force Model since then each second pedes-
trian would have an attractive and each second pedestrian a repelling effect. However,
mathematically it is possible to apply ks with negative value.

7.2 Comparison to Empirical Data of Pedestrians, Cyclists, and Cars

Recently a comparison has been done between the speed-density diagrams of one-di-
mensional, uni-directional car, bike, and pedestrian traffic [46, 47]. For this the already
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Figure 13 Various functions overlaid with Fig. 2

referenced data for pedestrians has been used, new data for cycling dynamics has been
gathered and existing data from an experiment on vehicular dynamics [48, 49] has been
added. According to the description of measurement and (re-)evaluation here speed has
been measured in exact accordance with the definition for quasi-instantaneous, space-
averaged measurement. This makes the theory discussed in this contribution applicable
to all three modes of traffic and it is interesting to see if the parameter values of a and k
vary over the modes.

From Fig. 14 one may suspect that kcar > kbike > kped and conclude from that that car
drivers look more ahead (react more to the next to next and further leading vehicle) than
cyclists and those more than pedestrians do. One can further conclude that the Kladek
formula where in effect k = 0 fits better to pedestrian dynamics although it was introduced
for vehicular (urban) traffic while the Social Force Model where in effect k = 1 describes
rather vehicular dynamics although it was suggested as a model of pedestrian dynamics.
However with all limitations discussed above all conclusions must be considered to be
very preliminary.

8 Summary – Discussion – Conclusions – Outlook

In this contribution we have computed the continuous description of the Social Force
Model of pedestrian dynamics for single-file uni-directional movement. We found that the
speed-density curve does not have an inflection point, but that with the introduction of one
more parameter to the Social Force Model one can recover an inflection point and at the
same time transfer the macroscopic description of the Social Force Model continuously
to the Kladek formula.

In the model extension – called SFMk – forces from other pedestrians are suppressed
by neighborhood degree in addition to the usual decay of forces in the SFM that goes
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Figure 14 Figure 7b from [46] overlaid with SFMk functions. Note that in the diagram “density=1” marks
full occupancy (212.8 cars/km corresponding to 4.7 m per car; 578 bikes/km, corresponding
to 1.73 m per bike; 2325.6 pedestrians per km, corresponding to 0.43 m per pedestrian) and
“speed=1” marks the maximum speed (cars: 14.5 m/s; bikes: 5.5 m/s and pedestrians: 1.4
m/s). Thus different to our approach in the paper density=1 marks the theoretically maximum
density not the actual one. Please note the comments in [46] why densities larger 1 have been
measured for pedestrians. The gray curve is our approximation to car data. It has a = 0.5,
k = 0.7, and xmax = 0.8. The magenta curve is our approximation to bike data. It has a = 0.5,
k = 0.2, and xmax = 0.9. The cyan curve is our approximation to pedestrian data with the
restriction that it has to be k ≥ 0. It has a = 0.3, k = 0.0, and xmax = 1.2. The dotted light blue
is our approximation to pedestrian data without restriction for k. It has a = 0.5, k =−2.0, and
xmax = 1.2. Maximum speed is 1 for all curves.

exponentially with distance. We also discussed a different model modification – called
SFMn – where forces are computed unmodified, but only the N nearest neighbors are
taken into account, and discovered that with appropriate parametrization SFMk and SFMn
exhibit very similar speed-density relations.

A comparison with empirical data of pedestrian dynamics suggests that both model
modifications yield more realistic results. A further look on comparable empirical data
for cyclist and car dynamics suggests that car drivers might consider next-to-next and
further vehicles more for their own movement decisions, while pedestrians concentrate
most on the person(s) immediately neighbored.

These observations suggest the conclusion that it would be at least beneficial, if not
absolutely required, to use the SFMk model extension in pedestrian planning simulation
projects. However, before this is brought into practice two issues have to be considered
or resolved:

First, a SFMk-type model for each pedestrian in each simulation time step would re-
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quire a sorting of surrounding pedestrians by their distance or – see below – other prop-
erties. This could prove to be computationally costly and slow simulations down. The
SFMn model variant could be an appropriate compromise. In PTV Viswalk for example
parameter ReactToN in the walking behaviors specifies to how many pedestrians some
pedestrian will react. With a default of ReactToN = 8 this is a SFMn = 4 model [50].
The SFMn contrary to SFMk means that simulation time is reduced compared to the orig-
inal SFM, since much fewer inter-pedestrian forces have to be computed.

Second – and this is the actual outlook on future activities – the SFMk proposed here is
a one-dimensional model. For application pedestrians need to be simulated in two space
dimensions. Unfortunately the extension of the SFMk to two dimensions is not straight
forward, since in 2d the obvious ordering is lost and it is not trivial to decide which power
of k has to be assigned to which pedestrian. One could of course simply order pedestrians
by distance (variant A). Or to take into account that in the 1d case for each power of k there
is a pedestrian in front and one behind one could partition the area around a pedestrian
fan-like into slices and count pedestrians separately in each slice (variant B). It is not clear,
however, which number of slices would make up for a good choice. Therefore it appears
to us most promising to do a Voronoi tessellation based on the positions of pedestrians and
assign k0 to all pedestrians in nearest Voronoi cells, k1 to all pedestrians in next-to-nearest
Voronoi cells etc. (variant C). Variants A, B, and C share in common that they all depend
on spatial separation (i.e. distance) as ordering property. It is not obvious, however, that
this will yield the best results. One could also think of a time based ordering (time to
collision, post encroachment time) or other safety surrogate measures like deceleration to
safety time [51]. A safety surrogate-based ordering would require a hierarchical method:
first identify those pedestrians with whom there are potential future collision issues and
order them accordingly, then order the remaining pedestrians according to a different
property.

From a theoretical perspective there is – or at least might be – further potential for im-
provements under the heading of an “inflection point”; this time not in the speed-density,
but the flow-density or flow-occupancy function, since the model modifications proposed
here do NOT induce an inflection point in the flow-density function. However, there are
two reasons to assume that one such ought to exist. The first is that it was directly ob-
served, at least with certain measurement methods [52], the second reasoning is indirect:
it could recently be shown by evaluation of empirical data that in pedestrian dynamics
there are fairly stable stop-and-go-waves [45]; and for the LWR model [53] it is known
that stable start waves only exist if and where the curvature of the flow-occupancy func-
tion is positive [54]. Thus for density waves (“humps”) that have a stable stop and a
stable start front, it requires a fundamental diagram which has parts with negative and
parts with positive curvature above capacity, unless a different mechanism which is not
captured by the LWR model is found that can explain stability. Usually instabilities –
i.e. spontaneously or from small perturbations evolving density humps – in transportation
systems are explained by and modeled with retarded reactions of the units [55].Yet since
there is no retarded reaction in the SFM, at least not explicitly, extending the model such
that the resulting fundamental diagram has an inflection point above capacity can be an
alternative to adding finite reaction times. One can even think of that possibly introducing
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retarded reaction is exactly what may produce the inflection point. For example the in-
troduction of retarded reaction particularly for acceleration from standstill (“slow-to-start
rule”) produces an inflection point in the fundamental diagram of the T 2 model of car
traffic [56, 57].
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[16] Lämmel, G., Klüpfel, H., Nagel, K.: The MATSim network flow model for traffic
simulation adapted to large-scale emergency egress and an application to the evac-
uation of the Indonesian city of Padang in case of a tsunami warning, chap. 11, pp.
245–265. Emerald Insight (2009). doi:10.1108/9781848557512-011

[17] Venuti, F., Bruno, L.: Crowd-structure interaction in lively footbridges under syn-
chronous lateral excitation: A literature review. Physics of Life Reviews 6(3), 176–
206 (2009). doi:10.1016/j.plrev.2009.07.001

[18] Beltaief, O., El Hadouaj, S., Ghedira, K.: Multi-agent simulation model of
pedestrians crowd based on psychological theories. In: Logistics (LOGIS-
TIQUA), 2011 4th International Conference on, pp. 150–156. IEEE (2011).
doi:10.1109/LOGISTIQUA.2011.5939418

[19] Galiza, R., Ferreira, L., Charles, P.: Estimating the effects of older people in pedes-
trian flow: A micro-simulation approach. In: Transport Research Board TRB 90th
Annual Meeting, pp. 1–13. Transportation Research Board (TRB) (2011)

[20] Papadrakakis, M., Fragiadakis, M., Plevris, V.: Footbridge lateral vibrations induced
by synchronised pedestrians: An overview on modelling strategies. In: 3rd ECCO-
MAS Thematic Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering (2011)

[21] Bruno, L., Tosin, A., Tricerri, P., Venuti, F.: Non-local first-order mod-
elling of crowd dynamics: A multidimensional framework with ap-
plications. Applied Mathematical Modelling 35(1), 426–445 (2011).
doi:10.1016/j.apm.2010.07.007
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