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Abstract – Movement behavior models of pedestrian agents form the basis of computational crowd simulations. In 
contemporary research, a large number of models exist. However, there is still no walking behavior model that can 
address the various influence factors of movement behavior holistically. Thus, we endorse the use of artificial neural 
networks to develop walking behavior models because machine learning methods can integrate behavioral factors 
efficiently, automatically, and data-driven. In this paper, we support this approach by providing a framework that 
describes how to include artificial neural networks into a pedestrian research context. The framework comprises 5 
phases: data, replay, training, simulation, and validation. Furthermore, we describe and discuss a prototype of the 
framework. 
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1. Introduction 
 The research on pedestrian walking properties identified various influence factors on movement 
behavior. Researchers apply these findings and develop operational models that describe peoples’ 
walking behavior [1, 2, 3, 4]. In computational crowd simulation, operational models are used as 
low-level behavior units. These models predict the movement of pedestrians in crowd simulation; thus are 
concerned with microscopic interactions of pedestrians. Microscopic aspects comprise, for example, how 
the velocity of pedestrians changes in different density situations. In general, the goal of microscopic 
behavior simulations is to identify macroscopic (emerging) movement patterns [5, 6] for crowd behavior 
predictions. 
 Most walking models define equations to calculate pedestrian movement behavior [7, 8, 9, 10]. 
Typically, the models’ equations are fully designed by the researchers. However, the research on walking 
behavior discusses various influence factors on movement behavior. The challenging task is to combine 
all of these behavior aspects into consistent and valid equations that can predict operational behavior 
accurately. However, contemporary research still did not find the optimal behavior model. The large 
number of existing walking models in the pedestrian dynamics literature point to this subtle issue. Thus, 
an individually designed model might not be an optimal solution to model operational behavior. A 
promising approach to overcome this issue is the application of machine learning methods that derive 
models based on data. This means that the modeling of the agents’ walking behavior is delegated to a 
machine learning method and is not directly carried out by a researcher. To evaluate this concept, we 
developed a framework that embeds the artificial neural network (ANN) methodology in the pedestrian 
research domain. We also provide an example implementation of the framework and an ANN. 
 
2. Related work 
 This research provides an approach for the application of ANNs in operational behavior modeling. 
However, literature shows that the application of ANN in operational behavior modeling is not new. 
 The authors of [12] apply a multi-layer perceptron ANN for training a cellular automaton model. The 
ANN models the influence of the terrain altitude on the cellular automaton rules. This means that the 
ANN model alters the probability of choosing a cell. The data that is used to train the ANN was acquired 
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by a virtual experiment. The input of the ANN is the relative position of the agent as well as the terrain 
altitude and the cell-coverage in proximity to the pedestrian. 
 In the research of [11], a multi-layer perceptron ANN is used to model the operational behavior of 
pedestrians in continuous space for a bidirectional flow at a crosswalk. The input data comprises the 
features of the agent’s movement and perception. The output of the ANN estimates the horizontal and 
vertical velocity of a pedestrian agent for the next simulation time step. The training data was acquired via 
camera and augmented by an artificial agent sensing data. The sensing data comprises the relative 
distance and velocity of the 5 nearest pedestrians in front of a pedestrian agent.  
 These papers showed that it is possible to apply ANNs in a pedestrian dynamics environment to 
simulate operational behavior. 
 Here, we define a framework that embeds an ANN for walking behavior modeling and simulation. 
This framework is a useful guideline for pedestrian dynamics researchers that like to include ANNs in 
their methods. Thus, we are concerned with providing an ecosystem for implementing ANN approaches. 
 
3. Integrating artificial neural networks in pedestrian research 
 In this section, we provide the details on the developed framework and discuss a prototype 
implementation of the method. In this context, we also show a case study using data from a laboratory 
experiment. 
 
3.1. Framework overview 
 The framework comprises multiple phases. Figure 1 gives an overview of the phases and the process. 
The first phase is the data phase. In the data phase laboratory or standardized field experiments are 
conducted to provide pedestrian movement data. The processed data is given to the replay phase. Here, a 
pedestrian simulation uses the experiment trajectory data and augments it to provide additional 
information of pedestrians. The augmented data samples are given to an ANN for training. The trained 
ANN is integrated as operational model into the pedestrian simulator in the simulation phase. The 
simulator uses the model to realize operational behavior in test cases. In the validation phase, well-known 
methods for model validation are applied to evaluate the capabilities of the developed ANN model. 
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Fig. 1: The workflow of the framework. Five phases provide the basis of the concept. Each phase has three steps and 
is applied in a different technological and mathematical context. It is possible to restart the process at any given 

previous phase in case a phase indicates issues. 
 
3.2. Data phase 
 The data phase comprises experimental studies and the automatic transformation of the experiments’ 
trajectory data into a format which is processible by pedestrian simulators. For details on pedestrian 
experiments and video-based trajectory acquisition, we point to [13, 24]. We used the trajectory data of 
the laboratory experiments UG 140 [13] and applied an automatic transformation for the pedestrian 
simulator MomenTUM [3, 14]. However, some data of these series where omitted because the natural 
flow of the participants were intentionally changed in the experiment. Such noisy data would influence 
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the ANN training results negatively. In addition to the participants’ movement data, the geometrical 
layout of the experiment is needed. The layout mostly includes the boundaries and obstacles. 
 Our tests with the data phase and the training of the ANN showed that we can improve the training 
phase later on if additional information beyond the participants’ trajectories are given. We identified that 
the shoulder positions, the velocity, and the head-direction can improve the ANN training. Regarding the 
layout of the experiment, it is highly beneficial to identify the height of obstacles. If the height is not 
given, the agent might appear to overlap with the walls, which is not true for small obstacles. 
 
3.3. Replay phase: basis 
 In this phase, the movement of the participants of the laboratory experiments is replayed in a 
pedestrian simulation. This is done to compute additional information based on the egocentric perspective 
of the participants. These information are basically data that a person can acquire from his or her visual 
perception but cannot be captured by a top-down camera. This data augmentation enables to enrich the 
input data set for training an ANN. For the replay phase, we use the pedestrian simulation framework 
MomenTUM. 
 Walking behavior is only a single aspect of the rich characteristic of pedestrian dynamics. For 
example, we can identify queuing and navigation behavior as additional mechanisms of pedestrian 
behavior [3, 19]. Operational behavior, which is in focus here, is heavily related to tactical behavior, 
memory, and perception (see Fig. 2). Therefore, a realistic simulation of operational behavior uses 
additional information beyond the movement properties that can be extracted by data of a typical 
movement experiment. 
 The augmentation of the data is done by classical models. These classical (bottom-up) design models 
implement assumptions of aspects of pedestrian behavior without machine learning methods. Here, we 
name these models hypothesis models. In the following section, we give details of the hypothesis models 
and data augmentations of our prototype implementation of the framework. 
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Fig. 2: A simplified visualization of the basic building blocks of pedestrian behavior. Operational behavior is 
directly dependent on the perception, memory, and tactical aspects of this pedestrian behavior architecture [1, 2, 3, 

4, 14]. Memory, perception, and tactical information cannot be acquired easily in the data phase. 
 
3.4. Replay phase: hypothesis models 
 The trajectory data of the experiments is used to guide the movement of the agent through the replay. 
If not given, we need and compute the current velocity of an agent for each time step. The velocity can be 
computed using the positions over time. We can extract the head direction of the participations if the 
laboratory experiments include markers for this. However, if no head-direction is given, the velocity 
vectors are a good substitution. 
 A tactical or navigation model define a walking target in the visible space of a pedestrian agent. The 
walking target comprises at least a target position for the agent [19]. Unfortunately, the walking target 
cannot be determined from experimental video data because they do not provide the egocentric 
goal-directed intentions that guide people into a direction. A tactical hypothesis model has to provide an 
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assumption of how the participants determine a walking target. We apply a graph-based model that 
includes a graph-generation schema and a routing method [18]. This provides sufficient detail for our 
purpose. It is important to note that the model should not provide a fixed position as input for an ANN but 
an egocentric perspective towards the walking target. This is realized by computing the relative angle and 
distance to the walking target position that is given by the navigation model. A schematic overview of the 
navigation hypothesis model is given in Fig.3 a). 
 The perception model should provide perceptual information for each computed time step in the 
replay phase. Models that apply a sweep-line method are sufficient for this purpose. However, the 
accuracy of the underlying grid and the stepwise angle change for the sweep have direct influence on the 
training success later on. Regardless of the realization of the perception model, it must provide egocentric 
information of the agent view. This would be the distance and the relative direction angle of a perceived 
object or free area. An overview of the applied perception model is given in Fig. 3 b). 
 

 
 

Fig. 3: Examples of how the navigation a) and perception b) hypothesis models. a) the navigation hypothesis model 
operates on a routing graph (orange). The agent’s walking target is the next visible vertex alongside the graph 

towards the agent’s destination (top blue circle). The agent avoids simple vertex hopping (red circle) alongside the 
graph. This method guides operational behavior to be goal directed. b) the perception hypothesis model is based on a 

perception arc (light pink) that originates in an agent. However, we avoid numerical inaccuracies and generate a 
fixed number of perceptual points. Thus, we identify all border cells of a circle. The border cells are the destinations 
of perception rays that start from the agent’s position. If a ray hits a target or its destination it extracts data, e.g. the 

distance to the collision cell. The parameters of the perception model in our prototype framework is an arc of 120°, a 
perception distance of 5.0 m, and a cell size of 0.1 m. 

 
3.5. Replay phase: output data 
 The simulation framework MomenTUM exports the data of the replay phase for each agent and for 
each time step. All exported data items form part of the training data. We marked the relative 
heading-change and the velocity magnitude of the training data as training ground truth variables. Thus, 
the ANN will use the training data as exercise information to predict the ground truth variables. The 
training data comprises the last velocity, the last heading-change, the current distance to the walking 
target, and the relative direction to the walking target of an agent. Furthermore, the perception 
information of the object closest to the agent will be used. Here, the information is the distance and the 
relative angle to the closest object. 
 Each data set is generated for each agent and each time step. The time step discretization is 0.04 
seconds, a value that is based on the time resolution of the video data. The time step is an important value 
because it shapes the classification set due to the velocity and heading change measuring points. We 
tested different time steps in values from 0.08 to 0.52, but could find benefits in higher values; thus, we 
used 0.04 seconds. 
 An important aspect of the reply phase is the handling of data that is not available from the 
experiments. These situations arise when participations are outside of the view of the camera in the 
experiments. Here, pedestrians are missing in the replay but exist in reality. This means that if a 
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pedestrian agent in the replay is close to the boundary of the camera range, this agent may miss to 
perceive other agents that are outside of cameras view. These kind of situation must be avoided for data 
quality. A solution is to ignore trajectory data points of the experiment that are closer to the camera 
boundaries as the perception distance of an agent. 
 
3.6. Training phase 
 For the purpose of applying the ANN in pedestrian dynamics, the input and the output data of the 
ANN are highly important aspects. We believe that these interfaces incorporate most pedestrian 
domain-knowledge and are crucial for an ANN to be able to learn pedestrian operational behavior. Thus, 
the given prototype ANN is a case study of how to approach the application of ANNs in a pedestrian 
dynamics context and therefore will cover only minor aspects of pedestrian movement behavior. 
 For our prototype ANN definition, we followed the approach of [11] and modeled a multi-layer 
perceptron ANN. We used TensorFlow and its Python API [15]. The ANN’s goal is to compute a joint 
classification of each agents’ egocentric velocity magnitude and movement direction change. Thus, we 
did not compute a regression. A regression showed to be highly inaccurate due to noise in the training 
data. We decided on the hyper-parameter, data processing, and the ANN architecture as follows: 
 
• We normalized the input data of the replay phase in the range [0.0, 1.0]. 
• The number of training data points for each agent and each time step of the replay data is 6, which 

define the number of input neurons. 
• Based on the data by UG 140 [13], we extracted 38599 training samples that provide a time sampling 

discretization of the pedestrian walking behavior of 0.04 seconds. Furthermore, we extended the data 
to 77198 samples by flipping all data regarding the walking axis of each individual agent. 

• The number of output neurons is defined by the joint classification of velocity and movement 
direction change pairs. For our prototype, we define 2 velocity classes and 41 movement direction 
change classes. However, we ignore all classes that cover less than 0.5% of the data to avoid noise. 
Thus, we actually have 6 classes, which cover 97.92% of the data and define the number of output 
neurons. 

• Furthermore, we oversampled classes [25] due to imbalanced data. 
• The activation function in the last layer is a Softmax function [21]. This function computes the most 

likely class based on the last hidden layer output and set the value of the output neuron that represents 
this class to 1.0, otherwise 0.0. The loss value for optimizing the network is computed by a cross 
entropy that is applied on the Softmax output. 

• The number of hidden layers is 2 and the number of neurons for each hidden layer is set to 60. 
• The activation function in the hidden layers is a leaky ReLu [20] with alpha and the initial weights 

between neurons that are connected with these functions are in range of a normal distributed in ]0.0, 
0.1]. 

• A bias neuron that is initialized with 0.0 is given for each matrix multiplication between layers. 
• We applied 150 epochs, a mini batch size of 1000, and 5% dropout on all connections of the ANN 

that applied a leaky ReLu activation function. We randomized input data but homogenized the class 
occurrences in the training and evaluation data. The training and evaluation split is set 90% to 10%. 

• We used the ADADELTA Optimizer [23] for the training. 
 
 The design and architectural parameters of the applied multi-layer perceptron ANN are the proposed 
approach to model ANN that is supposed to learn operational pedestrian behavior. This is therefore an 
example of the wide range of possible network solutions. The literature provides a rich body of research 
and information of how to train an ANN and which ANN architecture might be useful for specific 
applications [21, 22]. We point to the literature for further reading as the focus of this paper is to provide 
a framework that embeds an ANN in a pedestrian dynamics context. 
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3.7. Simulation phase 
 The simulation phase comprises the automatic integration of the trained ANN model into a 
pedestrian simulator and to run test simulations. We used the built-in method of TensorFlow to store the 
trained ANN model and the TensorFlow Java API to import the model into MomenTUM. 
 In the simulation phase, a set of standardized test scenarios should be used to calculate validation 
data for the ANN model. However, for the initial purpose to check whether the ANN model is able to 
provide basic operational pedestrian behavior, we applied the scenarios of the training data. Here, the 
trajectory data provides the start positions of the agents in the test simulations. From the starting position 
of each agent, the ANN will guide the agents’ operational behavior. The hypothesis models are used to 
generate the perceptual and navigation data for each pedestrian for each time step. This data and the 
movement information of an agent are given to an embedded ANN as input information. The agent’s 
ANN predicts the operational behavior for the next time step by a classification. The simulator translates 
the predicted class into new velocity magnitude and body rotation for each agent for each time step.  
 
3.8. Validation phase 
 The validation phase comprises a microscopic and macroscopic validation and applies the data of the 
trajectory and layout data of scenarios used in the simulation phase. 
 The microscopic validation checks whether the individual behavior of the pedestrian agents are 
correct. This includes two aspects. The first aspect is to validate if a pedestrian shows physically 
impossible behavior. For example, this happens if pedestrian slip through walls or if the body rotation is 
extreme. The second aspect addresses fundamental pedestrian behavior properties. These are for example 
whether pedestrian proactively avoid other pedestrians. 
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Fig. 5: a) a visualization of the experimental data of UG 140 [13]. b) a single ANN controlled pedestrian walking 
alongside the corridor. c) two ANN controlled pedestrians walking alongside the corridor and a single pedestrian 
standing still. Here, the ANN provides corrected behavior for first pedestrian but incorrect for the second. This 

situations can be seen quite often with the given ANN. d) is similar to c). Here, the situation is reversed, the first 
pedestrian is capable to avoid the standing person and reach the goal but the other agent behaves incorrect. This 

indicates that the behavior is not stable but a good starting point for further improvements. 
 

 The macroscopic validation is scenario dependent and compares emerging patterns of the simulation 
and the real pedestrian movement of an experiment. Here, one method is to compare the fundamental 
diagram that can be extracted by real and simulated trajectory data. Another example is to evaluate 
whether lane formation occur in the simulation and the experiments. 
 If the validation of the ANN model does not provide qualitative and quantitative operational 
pedestrian behavior, one has to repeat the framework process at one of the previous phase. Here, the 
identification of the root cause of model issues is highly dependent on the experiences regarding the 
combination of machine learning and pedestrian dynamics. For example, the ANN structure, the 
experimental data, or the hypothesis models could be insufficient. 
 In our prototype application of the proposed framework, we evaluated the microscopic properties of 
the ANN model of Sec. 3.6. Figure 4 shows snapshots of a replay and diverse results for the scenario UG 
140 [13]. Some of the predicted trajectories provide realistic behavior but some violate the physical 
properties of pedestrian walking. We identified that we miss to train the ANN with a large data basis of 
balanced and standardized trajectory data. This would have improved the results. Nonetheless, we could 
show that the ANN framework for pedestrian operational behavior modeling and simulation is a 
promising method. 
 
4. Conclusion, discussion and further research 
 In this paper, we provided a framework that integrates artificial neural networks (ANNs) into a 
pedestrian simulation context. The framework gives guidelines of how to embed an ANN based 
pedestrian walking model into a pedestrian simulation workflow. The framework defines 5 phases: data, 
replay, training, simulation, and validation. Furthermore, we discussed a prototype implementation of our 
framework and a model that uses the framework to simulate operational behavior of agents by a 
data-driven ANN. 
 The described approach has two important advantages. The first is that researcher can avoid 
individually designed mathematical models of pedestrian walking. The diverse influence factors on 
pedestrian walking behavior are complex and a bottom-up defined behavior model might not cover all 
walking behavior aspects that are hidden in experimental data. Using the developed framework, 
researchers can delegate the walking behavior modeling to an ANN. The second advantage it that one can 
define hypothesis models that support the ANN walking model. Hypothesis models augment 
experimental data as input for the ANN. Thus, hypothesis models provide a method for behavior and 
cognition hypothesis testing. For example, the perception model that augments the data in the replay 
phase plays a mandatory role for the ANN to be able to learn and generalize the movement behavior. We 
could use a perception model that includes attention aspects. This model may improve or worsen the 
learning capabilities of the ANN because the model may or may not capture important features of 
pedestrian perception. This will give evidence whether assumptions of the hypothesis model is 
well-chosen or insufficient for pedestrian dynamics. 
 We showed that the ANN framework is a promising approach. However, the developed prototype 
ANN is not reliable and needs improvement. Future research will focus on the application of a broad 
range of experimental data to further test and improve the ANN framework. The most important aspect of 
the ANN approach is to have a large data basis of realistic pedestrian trajectories in normal situations. The 
moderate success of the prototype ANN of this work can be reduced to the limited data and imbalanced data 
classes. Further, we will also test different hypothesis models and will evaluate ANN architectures for 
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pedestrian dynamics applications. Another promising improvement is to use eye-tracking methods on the 
participations in the experiments [17]. This technology will provide additional data and will improve the 
perceptual and navigational hypotheses. If high quality and automatically evaluable eye-tracking data is 
given, research could replace the hypothesis models with a machine learning approach. 
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