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Abstract This paper introduces a cellular automaton design of intersections and defines
rules to model traffic flow through them so that urban traffic can be simulated. The model
is able to simulate an intersection of up to four streets crossing. Each street can have a
variable number of lanes. Furthermore, each lane can serve multiple purposes at the same
time, like allowing vehicles to keep going straight or turn left and/or right. The model
also allows the simulation of intersections with or without traffic lights and slip lanes.
A comparison to multiple empirical intersection traffic data shows that the model is able
to realistically reproduce traffic flow through an intersection. In particular, car following
times in free flow and the required time value for drivers that turn within the intersec-
tion or go straight through it are reproduced. At the same time, important empirical jam
characteristics are retained.

Keywords Celular automata · urban traffic · vehicles · microscopic · models

1 Introduction and related Work

Vehicular traffic in urban networks is known to be more complex than highway traffic
because of additional influences like traffic lights, stopped vehicles, pedestrians or other
influences [1–3]. The situation is further complicated by the possibility of vehicles not
just to change lanes, accelerate or decelerate, but also turn directions at intersections. This
creates an interaction with the vehicles of different driving directions. Drivers that intend
to turn can be forced to decelerate because of crossing traffic which, combined with the
intentional interruption through traffic lights, creates vehicle queues [4]. These queues,
in turn, result in an uneven distribution of traffic over the system. Traffic can be saturated
(or even over-saturated) in front of intersections and sparse behind them.
In the past years, many models have been presented with the aim to describe and analyse
traffic in urban networks. Some of these models are highly complex and can simulate

Collective Dynamics 5, A80:1–25 (2020) Licensed under

http://collective-dynamics.eu/
mailto:tim.vranken@uni-due.de
http://dx.doi.org/10.17815/CD.2020.80
http://collective-dynamics.eu/
http://collective-dynamics.eu/index.php/cod/issue/view/5
http://collective-dynamics.eu/index.php/cod/article/view/A80
http://creativecommons.org/licenses/by/4.0/


2 T. Vranken · M. Schreckenberg

whole cities like the Manhatten model [5], or Transims [6]. The downside of these mod-
els is that they are created and calibrated specifically for the cities they simulate and an
adaption to different scenarios can be difficult. A more general model is called ARTIST
[7], which allows to use different car-following models, analyse and compare them. The
traffic model TRANSYT [8] can be used to analyse and then determine the optimum
fixed-time traffic signal settings. The model by Zhao et al. [9] is specialised on the sim-
ulation and analysation of pedestrians crossing the street under different circumstances
without a traffic light and through ongoing vehicular traffic flow. Lastly, the model IN-
TERGRATION [10] can be used to simulate specific intersections based upon a general
configuration, which is also the goal of this work but its calculation of velocities is only
based upon a macroscopic statistic. The focus in the following work will be placed on
cellular automata (CA) models like Brockfeld et al. inner-city model [11]. This model is
based on the Nagel-Schreckenberg-model (NaSch-model) [12] which is known as one of
the most simple CA-models for traffic flow. CA-models have the advantage that they can
realistically describe traffic flow statistics on a microscopic level, while they only require
the use of a small set of rules which facilitates an algorithmic implementation. Since the
publication of Brockfeld et al. inner-city model [11], multiple other models have been
presented. The most relevant of these models implement realistic rules for the motion
of turning for either the NaSch-model [12] or the brake light model [13]. Examples of
these urban models were presented in [14] and [3] where intersections are represented
as additional cells after every street section. An agent is only allowed to drive into these
additional cells if those are free of crossing flows. These models come with severe restric-
tions for network designs. The model in [3] for example is only able to reproduce one-lane
traffic in front of intersections. In [14] multi-lane traffic can be reproduced but every lane
leading into an intersection only serves one purpose (left-/right-turning or straight going
traffic). In reality, multiple lanes with multiple functions are possible. A more complex
simulation of intersections was presented in [15] or [16] which are able to reproduce traf-
fic on multiple lanes where agents can turn or go straight. The downside to both models
is the use of unrealistic high (infinitive) braking capacities and turning conflict resolving
through ”first come first serve” or the introduction of virtual impingements between the
conflict cells. Lastly, the model presented in [17] is able to reproduce multiple lanes from
which agents can turn or go straight. Furthermore, in this model agents can only turn left
if the next straight going vehicle is further away than 3.0 seconds based on its current
velocity. Through this, the influence of left-turning agents on multi-function lanes can be
analysed but the velocity of the turning agent itself is still not considered in the safety rule
due to an infinitive braking capacity.
Different from these models, this work aims to reproduce multi-lane traffic with a vari-
able number of lanes going in and out. It further presents a left-turning rule, where the
agent only turns if it does not interrupt the crossing straight going traffic flow. Lastly, the
model aims to simulate realistic single-vehicle dynamics through a limited deceleration
capacity.
Recently, a new CA-model by Lee et al. [18] (Lee-model) was introduced, in which
agents can at most decelerate with a maximum of D cells per time step instead of an infi-
nite deceleration potential like in the previous models. The model also introduces driver
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behaviour through which agents are able to drive closer to their leading vehicle than the
minimum safety distance, which can result in accidents. Through these two changes, the
model is able to reproduce car following times and traffic behaviour in synchronized traf-
fic [19] comparable to empirical findings. In [20] Pottmeier et al. (Pottmeier-model or
Pottmeiers extension) made small adjustments to the Lee-model through which accidents
are prevented, while still keeping the synchronized flow and realistic car following times.
Pottmeiers extension also introduced lane-changing rules to simulate two-lane traffic flow.
This paper now aims to adapt the Lee-model (with Pottmeiers adjustments) to urban traf-
fic, in order to create an urban city model with a realistic car following times and possible
synchronized traffic flow. Because of the finite braking capability, it is not always possible
for agents to stop in front of the additional intersection cells if other agents just entered
them. To adapt the Lee-model for urban traffic and to incorporate multiple lanes in front
of an intersection — with possible multiple purposes—, a new intersection design is to be
presented and additional rules are implemented.
To this end, first, we introduce the Lee-model and the modification made by Pottmeier are
explained in the following Sec. 2. Afterwards, we expand the CA by a two-dimensional
array in Sec. 3 to represent intersections and cells with important functions which are
specified. Based on this expansion, new rules are introduced in Sec. 4, which guide
vehicles past traffic lights and intersections in accordance with empirical data, so that
urban traffic can be simulated. In Sec. 5, we analyse deadlock situations based on these
rules and methods to prevent them are inserted in the model. Lastly in Sec. 6 we draw a
conclusion and an outlook on future work is given.

2 Lee et al. model and Pottmeiers extension

Before we introduce the new intersection design and the rules to simulate agents driving
through it, we will first shortly summarize the model by Lee et al. followed by Pottmeiers
extension.

2.1 The model by Lee et al.

The CA-model introduced by Lee et. al. in 2003 [18] allows the reproduction of realistic
car following times while also reproducing empirically found behaviour in synchronized
flow. Furthermore, the model introduced a maximum deceleration of D because of which
collision-free driving has to be realised through moderate driving instead of infinite brak-
ing capabilities. In order to prevent accidents, every agent has to calculate a safe speed
ct+1

n where the agent n stops behind the vehicle in front even if this vehicle suddenly starts
braking. This is achieved by calculating ct+1

n so that the following inequality is satisfied.

xt
n +∆+

τ f (ct+1
n )

∑
i=0

(ct+1
n −D · i) ≤ xn+1 +

τl(vt
n+1)

∑
i=1

(vt
n+1−D · i) (1)
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This inequality can be solved for ct+1
n :

ct+1
n ≤

xt
n+1− xt

n−∆+ vt
n+1 · τl(vt

n+1)

τ f (ct+1
n )+1

+
D
2 [τ

2
f (c

t+1
n )+ τ f (ct+1

n )− τ2
l (v

t
n+1)− τl(vt

n+1)]

τ f (ct+1
n )+1

(2)

Here, xt
n is the position of the n th vehicle at time step t and vehicle n+1 represents the ve-

hicle ahead of the nth one. vt
n+1 is the velocity of the vehicle in front and τl(vt

n+1),τ f (ct+1
n )

describe the number of time steps the respective vehicles need to decelerate until they
stop. ∆ is the minimal coordinate difference required between the two vehicles, so that
no accidents occur (i.e. at least the size of the length of the vehicle L). Because drivers
desire to drive as fast as possible, the maximum ct+1

n (c̃t
nt +1), which still satisfies equa-

tion Eq. 2, will be used. To reproduce synchronised traffic and low car following times
in free flow, agents need different behaviour depending on the local traffic situation. To
judge the situation, the agent not only looks at the preceding vehicle n+1 but also at n+2
and calculates a two-state variable γ t

n based on their velocities. This way the agent judges
the situation optimistically (γ t

n = 0) when it is not to be expect that the vehicle in front
will have to decelerate for any reason within the next time-step or defensive (γ t

n = 1) if
the agent assumes that the n+ 1 vehicle could decelerate. This judgement procedure is
reflected by:

γ
t

n =

{
0, for vt

n ≤ vt
n+1 ≤ vt

n+2 or v2
n+2 ≥ vS

max−1
1, else

(3)

Now, τ f ,τl, and ∆ have to change depending on γ t
n . If the driver judges the situation

optimistically, ∆ will only be the length of the preceding vehicle L while τ f ,τl will be
lower than the complete time each agent needs to come to a stop. This means, that the
agent does not look if it is possible to stop in time before creating an accident but only
if a accident would be created in the next tsafe time steps. On the other hand, if the agent
does judge the situation defensive (γ t

n = 1), then τ f ,τl will be the complete time frame the
vehicle needs to come to a standstill, while ∆ will be increased with an additional safety
gap gadd. The three variables will be calculated according to:

∆ = L+ γ
t

n max(0,min(gsafe,vt
n−gsafe)) (4)

τ f (v) = γ
t

n
v
D
+(1− γ

t
n )max(0,min(

v
D
, tsafe)−1) (5)

τl(v) = γ
t

n
v
D
+(1− γ

t
n )min(

v
D
, tsafe) (6)

The −1 in Eq. 5 the calculation for τ f accounts for the one second reaction time a driver
needs on average. c̃t

nt +1 has to be calculated numerically every time step in such a way
that it also satisfies these three equations. The velocity calculation and movement of one
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agent can then be calculated according to:

p = max(pd, p0−
vt

n(p0− pd)

vslow
) (7)

c̃t
nt +1 = max(ct+1

n | ct+1
n satisfies Eq. 1−6) (8)

ṽt+1
n = min(vmin,vt

n +a,max0,vt
n−D, c̃t

nt +1) (9)

vt+1
n = max(0,vt

n−D, ṽt+1
n −η) (10)

xt+1
n = xt

n + vt+1
n (11)

with a random delay according to

η =

{
1, if q < p
0, else

(12)

Here, q is a random value between zero and one. Eq. 7 ensures that stopped vehicles
dawdle with a higher probability than moving vehicle (slow to start rule [21]). The decel-
eration restriction is ensured in Eq. 9 and Eq. 10. This means that changes done to ct+1

n
later on in Sec. 4 and Sec. 5 will not break the deceleration restriction. Lee et. al. found
the following parameter choices to be the best fit on empirical data: a = 1,D = 2,L =
5,vfast = 19, tsafe = 3,gadd = 4, p0 = 0.32, pd = 0.11,vslow = 5,vmax = 20 as well as the
length of a time step ∆t = 1 s and the cell length of ∆x = 1.5 m.

2.2 Pottmeiers extension

Pottmeier et al. [20] provide an extension to the Lee model that implements accident-free
multi-lane traffic into the model.

2.2.1 Accident-free traffic

To prevent accidents from occurring, Pottmeier et al. [20] introduced the brake light and
slightly changed Eq. 3. The brake light dt

n is a boolean variable which shows whether
the leading vehicle decelerated because of traffic restrictions or it just dawdled. It is
determined by

bt
n =

{
1, for ṽt+1

n < vt
n,

0, else
(13)

A check for the brake light of the leading n+2 vehicle, as well as harder restrictions for
the optimistic state, change Eq. 3 to the following equation.

γ
t

n =


0, for bt

n+2 = 0 and (vt
n ≤ vt

n+1 < vt
n+2 or

(v2
n+2 ≥ vS

max−1 and vt
n− vt

n+1 ≤ D))

1, else
(14)
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Due to the brake light, the change from vt
n+1 ≤ vt

n+2 to vt
n+1 < vt

n+2, and the addition
of vt

n− vt
n+1 ≤ D the behaviour was changed enough, so that no traffic accidents were

registered in 20 simulations over 60,000 time steps for different densities between 10 and
100 cars

km . This means that even if accidents are possible, they are so unlikely that they are
statically not relevant.

2.2.2 Multi lane traffic model

The next step to simulate traffic is to add lane-changing rules, so that multi lane traffic
can be added. Traffic rules for asymmetrical lane changes were implemented and anal-
ysed [22] for highway traffic. Because in urban traffic lane changes are often dominated
by restrictions from turning or stopping vehicles, the following work will only use sym-
metrical lane changing rules as implemented in [23]. Originally, lane changes have to
be desired and possible for tlc = 3 seconds before a lane is changed, to ensure save lane
changes and adapt the empirical finding of an average lane changing time of 3 seconds
[24]. In the following, roads with more than two lanes will be simulated. On these roads,
it can happen that two agents want to change lane into the same gap. For example on
a three-lane street, one agent from the most inner lane (right in driving direction) can
change to the lane in the middle at the same time as one from the outermost lane (left in
driving direction). Because even with tlc = 3 the lane change only takes one second at
the last time step, this can not be prevented. Hence, tlc = 1 will be used in the following
simulations and agents are only allowed to change to a lane to their right (in driving direc-
tion) on even (t mod2 = 0) and to their left during uneven time steps (t mod2 6= 0). Since
this change is corrosponding to changing tlc = 2, it is to be excpected that this results in a
slightly higher traffic flow and number of lane changes as shown in [23].
Before this is considered, it is tested whether the agent wants to change the lane. If a lane
change would not allow the agent to accelerate more than on his current lane, or if the
agent currently judges the situation positive, a lane change is not initiated. To formulate
the conditions for this, first, l is defined as an index to indicate the lane of the agent and
1− l indicates the lane the agent wants to change to. The second condition can then be
written as ct+1

n,l−1 > ct+1
n,l . If the three conditions are met, the agent tests whether a lane

change is possible. A lane change is safe, if the vehicle on the targeted lane in front
xt

F(1−l,n) as well as behind xt
B(1−l,n) is further away than gsafe. Furthermore, the velocity

that corresponds to the respective safe velocity on the targeted lane ct+1
n,l−1 should not be

smaller than vt
n−D and the velocity of the vehicle behind the agent vt

B(1−l,n)−β should

be lower than ct+1
n,l−1, so that both vehicles can decelerate enough. Here β is a constant

between 0 and D which controls how strong an agent is allowed to thwart the agent behind
him for a lane change. According to [24] thwarting the agent behind for a lane change is
fine, as long as the agent behind has to decelerate not more than around −1.25 m

s2 (which
is roughly the engine brake). Because of this, we use β = 1 cells

time step2 = 1.5 m
s2 for the

following work. Summarized, an agent changes its lane if all of the following condition
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hold true at once:

(t mod2 = 0 & lane change to the right) or (t mod2 6= 0 & lane change to the left) (15)

vt
n,l < vmax (16)

ct+1
n,l−1 > ct+1

n,l (17)

γ
t

n = 1 (18)
xt

n− xt
B(1−l(n)) > L+gsafe (19)

xt
F(1−l,n))− xt

n > L+gsafe (20)

vt
n−D≤ c̃t+1

n,1−lt
n

(21)

vt
B(1−l,n)−β < ct+1

n,l−1 (22)

With these rules, accident-free multi-lane traffic can be simulated. To also simulate urban
traffic, intersections have to be introduced and necessary rules have to be added to the
model.

3 Intersection design

In urban networks, more complex approaches are required to implement an intersection
design that reflects real traffic dynamics. While the traffic flow of a road mostly depends
on the speed limit and number of lanes, traffic in and in front of intersections depends on
a number of different conditions like, how many streets are crossing, if it is allowed to
turn left/right, or if pedestrians cross the street while vehicles try to turn. The high vari-
ety in designs of intersections makes their adaptation into CA-models challenging. For
this reason, simplifications have been identified, that aim to describe the traffic behaviour
in intersections without the need to restrict the design to a specific topology. The most
common example of this is found in the previously mentioned [14] and [3], where inter-
sections were replaced by an extension of every street. Vehicles are then not allowed to
enter these extensions when a vehicle is currently driving on a corresponding extension
of a crossing street. A problem of these designs is that the model presented in [3] only
works with one lane, while [14] may use multiple lanes, but each lane only allows for
one purpose (e.g. only turning left/right or going straight ahead). It is also not possible
for a vehicle to stop before the extension, if the crossing extension is occupied, because
of the maximum deceleration D = 2 in the Lee-model. Due to these limitations, a two-
dimensional intersection is presented in Fig. 1 which aims to overcome both problems.
Note that this is a rather complex example intersection to show as many functions as
possible at once. A vehicle that leaves a street simply moves according to its previous
direction through this array. When they meet a crossing point (marked with a 1 for left-
or 2 for right turning) and they desire to turn, they check whether turning is possible for
them at this cell, or if the crossing point is for a different direction (for eastbound traffic
while the agent is driving north for example). If it is desired and possible, it is tested if
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the turn can be done without forcing crossing vehicles to decelerate, according to the rule
explained in the following Sec. 4. When all conditions are met, the vehicle will move to
the next cell in turning direction (inertia will be considered separately in section Sec. 4.2).

0,0

2,5
1

6,1
2

4, 3
1

5, 5
2

Figure 1 A two dimensional intersection with multiple roads connecting to it. The arrows show the func-
tions of each lane while the bigger numbers represent the x, y- coordinate of the specific cell.
The smaller numbers indicate specific turning function tc of the cell c. Cells with tc = 1 allow
vehicles to turn to their left (in driving direction), while tc = 2 does the same for the right. tc = 3
allow vehicles to turn right outside of the intersection. All other cells have the value tc = 0 which
is not shown.

The intersection in Fig. 1 shows multiple different functions of lanes in front of it. The
vehicle, which comes from the west (so east-bound traffic), have four lanes to use. The
most inner (right in driving direction) lane is a representation of a slip lane, where vehicles
can turn right without driving through the intersection (often also without a traffic light).
The next two lanes only allow for straight going traffic flow and vehicles on the last lane
have to turn left at the cell (4,3). On the other hand, the inner lane on the north-bound
traffic allows vehicles to only turn right at the cell (6,1). The west-bound vehicles can
turn either right or left depending on their route and vehicles driving south can only keep
driving south even though turning left would be possible at the cell (1,1) or (1,2) but
they both have tc = 0 so turning is forbidden there. Like this, an intersection with up to
four roads can be modelled. Agents now only need to know if they are going east, west,
north, or south. If they are going north, their next cell is in decreasing y-direction, south-
bound traffic is going in increasing y-direction and west/east going traffic is going in the
increasing/decreasing x-direction respectively.
Each intersection can now be designed with the knowledge of the number of lanes nd

in
coming from d ∈ [e,w,n,s] (east, west, north or south) as well as the number of lanes
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Table 1 (x , y) coordinates of the cells where each direction connects with the intersection.

• ingoing roads outgoing roads
east (0 , y) (xmax , y+ re)
west (0 , ymax− y) (xmax , ymax− (y+ rw))
north (xmax− y , 0) (xmax− (y+ rn) , ymax)
south (y , ymax) (y+ rs , 0)

leaving in each direction nd
out in three steps. Note that slip lanes are not counted here.

First necessary length in the x-direction is then calculated by:

xmax = max(nn
in,n

n
out + rn)+max(ns

in,n
s
out + rs)+3 (23)

First, the higher number of lanes from north- and south-bound traffic, which lead into
the intersection or out of it, is found. Depending on the higher number of lanes, the
intersection is expanded. The parameter rd counts the number of lanes of ingoing roads,
which are no slip lanes, from which agents are only allowed to turn right. An example of
this is the first lane on the ingoing road for north-bound traffic. Because agents are only
allowed to turn right from the first lane, the outgoing lanes have to start one cell earlier
(so with a lower x coordinate). This leads to a larger array, even though the ingoing and
outgoing roads for north-bound traffic both only have two lanes. Finally, 3 additional
cells in length are added. One cell is placed between the two opposite going directions
(in this case the cells with an x-coordinate of 3), one at the beginning (x-coordinate of 0)
and one at the end (x-coordinate of 6). The central cells are used to physically separate
the opposite going flows. The additional cells at the beginning and end of the array are
implemented because in reality most of the times there are also pedestrians crossings
between the stopping point for vehicles and the intersection. In the same way, the y-
length can be calculated by:

ymax = max(ne
in,n

e
out + re)+max(nw

in,n
w
out + rw)+3 (24)

In the second step, the last cell of each lane y of an ingoing or outgoing road will be
connected to the respective cell in the intersection array. In Tab. 1 the (x , y) coordinates
of each cell for ingoing and outgoing roads in each direction is defined, in dependence
on the previous calculated values (xmax , ymax) and the current y-coordinate of the lane.
Because slip lanes are still not taken into account here, we only count from the first lane
leading into the intersection.
Finally, in the third step, the tc values for turning points have to be identified. For that,
the purposes of each lane in front of an intersection (e.g does it allow turning in one or
multiple directions and if yes in which) has to be specified as a characteristic of the lane.
Then the tc of the last cell of every slip lane is changed to 3. To calculate the left- and
right-turning cells within the intersection, for each direction d the maximal number of
lanes, from which a turn right td

r,max or left td
l,max is allowed, has to be identified. On a
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Table 2 (x , y) coordinates (written in vector notation) of the turning cells for left turning and right turning
in dependence of the original driving direction.

• left turning (tc = 1) right turning (tc = 2)

east
(

2+max(ns
in,n

s
out + rs)+ te

l,max− te
l

ne
in + te

l − te
l,max

) (
te
r + rs

te
r

)
west

(
ns

out + rs + tw
l − tw

l,max
2+max(ne

in,n
e
out + re)− tw

l + tw
l,max

) (
xmax− (tw

l + rn)
ymax− tw

l

)
north

(
xmax−nn

in + tn
l,max− tn

l
max(ne

in,n
e
out + re)+2− tn

l,max− tn
l

) (
xmax− tn

r
tn
r + re

)
south

(
ns

in + ts
l,max− ts

l
ns

out + rs + ts
l − ts

l,max

) (
ts
r

ymax− (ts
r + rw)

)

road where multiple lanes allow turning into the same direction, each lane gets a number
depending on its order in the driving direction, where we assign a 1 to the most inner
(right) lane and the maximum occurring value to the outermost (left) lane respectively.
For example, we consider a road that has three lanes from which agents are allowed to
turn left. The most inner lane of these left turning lanes corresponds to td

l = 1 while
the next one is td

l = 2 and the last one td
l = 3. The (x , y)-coordinates for each turning

position can then be calculated according to Tab. 2. Because of the rather complex form

of the left turning coordinates, they are written in~r =
(

x
y

)
notation. After explaining

how vehicles move through an intersection, in the next section, the rules for the behaviour
of agents will be defined, so that they move without accidents and according to empirical
values.
In an additional step, the last cell of all slip lanes are connected to the first cell of the
respective outgoing road to their right and the tc value is changed to 3.

4 Intersection behaviour

Before the characteristic traffic behaviour within intersections is described, we model the
traffic in front of it. It should be noted that traffic in urban areas, in general, is slower than
on highways. For highway traffic, the Lee-model is implemented with a standard value
of vmax = 20 cells

time step ≈ 100 km
h while in urban areas vmax ≈ 10 cells

time step ≈ 50 km
h is more

appropriate and will be used throughout the rest of this work.

4.1 Behaviour in front of traffic lights

To avoid accidents in front of a traffic light, the situation assessment of agents has to be
modified first. Agents close to a traffic light T t

S,y on their street S and lane y, which is red
(T t

S,y = R) or yellow (T t
S,y = Y ) in this time step, should not judge a situation optimistic.

In these cases, it is to be expected that the vehicles in front on their lane y will stop
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soon. As long as the traffic light is not green (T t
S,y 6= G), the vehicle should judge the

situation defensively γ t
n = 1. This only applies if a vehicle is close enough to a red light

to see it. According to [13] a driver only considers a temporal headway h to judge the
situation. The agent will only consider the vehicle in front if the distance to the respective
vehicle is smaller than the distance it will pass in the next h seconds, based on its current
speed. Because most traffic lights are not only fixed to the side of the road but also
raised above the height of a normal vehicle, agents are able to perceive red traffic lights
which are further away. A traffic light is taken into account as long as the agent needs
less than 2 · h time steps to reach it. As pointed out in [13], this temporal headway is
judged to be 6 ≤ h ≤ 11 s depending on the velocity of the vehicle, the driver type, and
the surrounding situation. Because vision is usually strongly restricted in urban areas, we
consider the most limited case of h = 6 s which means only traffic lights with a distance
of dt

n,tl = 2 ·6 = 120 cells or less are considered. This changes the behaviour of agents to

γ
t

n =


0, for (bt

n+2 = 0 or (T t
S,y 6= G and dt

n,tl ≤ dt
n,tl)) and

(vt
n ≤ vt

n+1 < vt
n+2 or (v2

n+2 ≥ vS
max−1 and vt

n− vt
n+1 ≤ D))

1, else
(25)

Next, it has to be ensured that the vehicle is able to stop before the traffic light if necessary.
For that, it is not enough to check the n+1st vehicle and keep a safe distance to it because
the vehicle ahead could still be able to pass the traffic light while the nth agent has to
stop. Instead, the brake distance also has to be calculated. As stated in [25] the stopping
distance δ (ct+1

n ) for a discrete system can be calculated according to

δ (ct+1
n ) = D

[
αnβn +

αn(αn−1)
2

]
(26)

with αn,βn defined as the integer and fractional part of ct+1
n
/

D . If this stopping distance
together with the position the vehicle will have in the next time step xt+1

n is greater than
the length LS of the street S the vehicle is currently driving, the vehicle would not be able
to stop before it reaches the red light from the next time step on:

δ (vn)+ xt+1
n > LS (27)

To prevent this, ct+1
n has to be reduced according to:

ct+1
n = max(vt

n−β2,0) (28)

where

β2 =

{
2, if xt+1

n ≤ LS−2
1, else

(29)

so that the agent drives up to LS and stops there. If the traffic light is not red but yellow
and Eq. 27 does not hold true, the vehicle keeps driving without braking. When the traffic
light is green, the agent can drive freely without additional restraints. In this case, [14]
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showed that the average vehicle should pass a traffic light tB = 2± 0.5 s (time require-
ment) after the previous vehicle. In [26] Krbálek et al. presented empirical data for the
time requirement (clearance time) of multi-lane traffic with no influence from other cars
moving in different lanes or arms. There, they observed a time requirement of around
1.6± 0.6 s. To be able to replicate both these values, the model will aim to produce a
value tB ∈ [1.5,2.2] s. In fact, because urban traffic is often dominated by traffic light
controlled intersections, the reproduction of this time requirement takes priority over the
highway traffic jam values. It was found, that the outflow of a jam is on average around
Fout ≈ 1800vehicles

h [27] and a jam propagates with a velocity around vjam ≈ − 15km
h

[28,29] against the traffic flow. To calibrate the traffic in such a way, p0, pd and vslow have
to be adjusted accordingly. It usually takes around δ t ≈ 3− 4 [30] seconds before this
time requirement is fulfilled. As stated in [1], this δ t can be calculated according to:

δ t = ∆t−n∆ttB (30)

Here, n∆t denotes the number of agents which pass the traffic light within ∆t. To calculate
δ t in dependence of p0, pd, and vslow traffic flow interrupted by a traffic light was simu-
lated. In this simulation, it was ensured that the number of vehicles queuing in front of
the traffic light is always higher than the number of vehicles that pass it during one green
phase.
Note that in case of periodic boundary conditions (as used for free flow simulations) the
traffic light would result in a high density of vehicles before the traffic light. This, in turn,
would result in a very low density behind the traffic light which would reduce the inflow
into the traffic jam before the traffic light after a few circles. Due to this, simulations in
this work that include traffic lights were done with open boundary conditions. There, the
traffic inflow was set to a value significantly greater than the capacity of the traffic light
and vehicles that passed the traffic light or intersection were taken out of the system after
it is ensured that they are not relevant for the vehicle-vehicle interaction in or before the
intersection.
For each vehicle, we then calculated the required time tB it needs to pass the traffic light
after the vehicle in front of it has already passed it. We obtain ten million time values
by running a simulation for 100 hours, corresponding to 360,000 time steps. This re-
sults in significant average values for δ t as shown in Fig. 2. It becomes apparent that δ t
is always greater than 4 time steps, independent of the choice of p0, pd,vslow. This can
be explained by the empirical findings presented in [31]. The authors found that drivers
do not always start driving after the vehicle in front accelerated but sometimes they ac-
celerate at the same time as the vehicle in front (or even before them and topping again
afterwards). Here, the driver close to the front of the queue tends to rather react to the
traffic light change than to the vehicle in front. This results in a shorter acceleration time
and has to be taken into account in this model. In real intersection traffic, a vehicle that
accelerates earlier than the preceding vehicle (because it is dawdling) can simply stop
again after a few centimetres. Because of the discretization of time and space, this is not
possible within simulations and each vehicle can only accelerate after the vehicle ahead
started. Since taking this into account would require an unreasonably fine discretization
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of space, this is not feasible with the priority of computational speed and instead the
maximal acceleration a has to be increased temporarily in urban traffic.

1 3 5

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

4.2

4.5

4.8

5.1

p0

δ
 t

0.1

0.2

0.3

pd

Figure 2 The time it takes for traffic flow to become stable after the traffic light turns green δ t. The three
figures correspond to the different vslow 1,2, and 3. For each vslow p0 and pd were changed in
different simulation runs. Note that it was ensured that p0 > pd allways holds true.

In [19] Kerner et. al. faced the same problem and also concluded that a has to be tempo-
rally increased. In accordance with their work, an additional step will be added each time
step to calculate the acceleration as following:

at+1
n =

{
k ·a, if vt

n+1− vt
n +at

n+1τ ≥ ∆va

a, else
(31)

Here, k, τ, ∆va are parameters that have to be calibrated. The parameter k defines how
many times faster the agent is allowed to accelerate. A greater τ considers longer times
the agent in front accelerated before agent n and ∆va is a safety parameter. This means that
to reproduce the two empirical values δ t ≈ 3− 4 s and tB ∈ [1.5,2.2] s, six parameters
k, τ, ∆va, p0, pd, vslow have to be defined. This can be reduced by [31], where the
authors find an empirical maximal acceleration in front of a traffic light at around 6miles

h·s ≈
2,7 m

s2 ≈ 2 cells
time step so that k = ∆va = 2 cells

time step can be applied in accordance with empirical
findings. The increased a is supposed to reproduce faster reaction times and τ > 1 would
be relevant if the agent dawdled the time step instead of reacting fast. Together with the
fact that there are more parameters to calibrate than empirical values that can be used to
estimate them by empirical fits (which means there is a freedom of choice), we use τ = 1,
so that only agents that drive directly behind the vehicle ahead are effected. To calibrate
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Figure 3 Different δ t, tB, vjam, Fout in dependence of p0, pd for the two different vslow = 3 and vslow = 5
in figure a) - d) respectively.

the model in such a way that the four values tB, ∆t, vjam, and Fout are in accordance with
empirical findings, 100 hours (or 360000 time steps) where calculated in a simulation for
each set of parameters (p0, pd, vslow). In this simulation, a street is interrupted by a traffic
light (with G = 30, Y = 5, R = 65 time steps) and the traffic flow was set high enough
so that the traffic is permanently in over-saturated flow [1]. In each simulation for every
agent that passed the green light, the time step in which it passed the traffic light was
noted. From the time step difference and the knowledge, when a traffic light turns green
and red, tB can be calculated. Furthermore, the number of cars that pass in each green
phase can be counted and δ t calculated based on these two values. The corresponding
results are displayed in Fig. 3 a) and c). To create b) and d) in Fig. 3 vehicles were
simulated, driving within a 15 km long circle for 60,000 time steps with a set density.
This simulation was repeated using different densities and the average velocity for all
vehicles in the system was taken in the second half. Out of the density and velocity,
the fundamental diagram was reproduced. The value for vjam can then be obtained by
calculating the average gradient of the fundamental diagram in the jammed traffic phase.
Retracting the graph with this gradient up to the point of the highest flow results in the
value for Fout.
As we can see, the values for tB, vjam, Fout follow the expected curve, where higher
p0, pd result in lower vjam, Fout or higher tB. δ t also increases with higher p0 as it is
to be expected because a higher probability to dawdle, if a vehicle stands still, means it
takes longer for a sufficient number of vehicles to start so that the flow gets stable. This
also means that vehicles that already started to drive do not have as much influence on δ t
because if the vehicle n− 1 behind the agent n dawdled (i. e. does not start) it does not
matter whether agent n dallies or not. It only matters, if n− 1 does not dally. This can
also been seen in Fig. 3 a) where δ t does not depend on pd . All values for δ t and tB are
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within the empirically found intervals, while they vary strongly for Fout and vjam where
no combination of values satisfies both perfectly. For p0 = 0.34, pd = 0.14,vslow = 5
we found vjam ≈ −15.5 km

h and Fout ≈ 1770 vehicles
h , such that both values are in good

agreement with the empirical values. They are even closer than in the original configura-
tion of the Lee-model where p0 = 0.32, pd = 0.11, vslow = 5 are used, which resulted in
vjam ≈ −14 km

h and Fout = 1900 vehicles
h [23]. tB = 2.23±0.04 s and δ t = 3.7±0.1 s are

(including their error) also in accordance with the empirical found values of tB ∈ [1.5,2.2]
and δ t = 3−4 seconds. [26] not only presented a mean empirical value for the time re-
quirement but also a distribution of the scaled time requirement. Due to the discretization
of time into 1 s intervals, the model is only able to reproduce time requirement values of
1,2, or 3 s and so can not recreate the distribution realistically but only the mean value.
Looking at tB one can note that we choose values for p0, pd , and vslow which correspond
to the upper limit of the empirical values of tB. Since lower values of p0, pd , and vslow
also reflect realistic values of tB, it would be conceivable to choose these values according
to a distribution. Every vehicle which is placed into the system would then receive a cer-
tain value in the first time step according to these distributions with a certain probability.
The influence of different distributions on the vehicular traffic and the required time value
at traffic lights will be studied in a future work.
The additional values for gsafe, tsafe also have to be calibrated. tsafe controls how many
seconds ahead in the calculation of ct+1

n are considered. A higher value of tsafe results
in safer driving but also in greater distances between the vehicles in free flow and so in
higher car following times. Because the car following times should remain below one
second in free flow [32], tsafe = 3 is kept in accordance with the Lee-model. In [23] the
influence of gsafe was analysed and it was shown that a higher value reduces the influence
of dawdling and wrong driver behaviour. This results in a more stable synchronized traffic
phase, but also reduces the maximal possible traffic flow.
The influence and existence of the synchronized traffic phase for urban traffic were ana-
lyzed in [1]. It was shown that the synchronized phase is still important in urban traffic
in the case of green waves (when the traffic light at the next traffic light is set in such a
way that it is green when a vehicle arrives). In these cases, it can happen that the first
vehicle is within the interaction range of the next traffic light before it turns green. Then
it still has to decelerate for several time steps before the traffic light turns green. This
creates a local transition from free flow into the synchronized flow. The moment a traffic
light turns green and the vehicle starts to drive again, the traffic phase changes from wide
moving jam to free flow (J→ F) without a transition into the synchronized phase. This
means that neither gsafe nor tsafe have a significant influence on δ t and tB. Because of this,
gsafe = 4 can also be retained.
Lastly, agents should only be allowed to drive into intersections when they would leave
from the right lane. As shown in figure Fig. 1, different lanes in front of intersections
can have different functions and so agents have to enter the intersection from the correct
lane in accordance with their intention in the intersection (left / right turning or driving
straight). If the agent leaves from the wrong lane, it has to be prevented just like with a
red light by rules Eq. 26 - Eq. 28. Furthermore, it has to be ensured that the agent also
changes to the correct lane, at best before he reaches the intersection and has to brake.
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This will be ensured by additional lane changing rules.

4.1.1 Lane changes before traffic lights

The agents should aim to be on the correct lane so that they can pass into the intersection
without braking when the traffic light is green. This means that once the traffic light comes
into vision (120 cells) the rules to check if the agent wants to change lanes (equations
Eq. 16 and Eq. 17) will be replaced by a check whether the agent is on the correct lane
and/or if the lane change would be in the direction of the right lane. To this extent, each
lane gets one or multiple purposes selected from either straight, left or right and every
agent is assigned a route which contains one of these functions for the specific street.
Then, the agent can turn into the direction he intends to by making use of the order of the
roads. To get towards right-turning lanes, one always has to do lane changes towards a
more inner lane (to their right in driving direction) and to get towards left turning lanes
they have to do a lane change towards a more outer lane (to their left in driving direction).
To get to a straight going lane, the agent has to change towards a more outer lane if he is
on a right turning lane and towards a more inner lane if he is on a left turning lane. In [33]
driver change lanes more aggressively in front of intersections to still get to their desired
lanes. This means that if equations Eq. 19 - Eq. 20 do not hold true but

xt
n− xt

B(1−l(n)) > L & vt
B(1−l(n))−2 < vt

n (32)

xt
F(1−l,n))− xt

n > L & vt
n−2 < vt

F(1−l(n)) (33)

does, the agent still changes the lane. Furthermore, β in Eq. 22 is changed to 2, to allow
the agent to slow down the following vehicle stronger.
With this, the agent will change to the right lane before leaving the street if possible and
if not hold. In reality, it is often observed that drivers who can not change to the correct
lane in front of a traffic light do not hold at the holding line but earlier. We implement
this empirical observation in our model by the vehicles that can not change to the correct
lane starting to brake from the next time step on until the vehicle stops. Then, the agent
does not accelerate until the lane was changed. Furthermore, in [34] it is described that
drivers in the targeted lane can act with a so-called ”courtesy”, which means that they will
actively change their driving behaviour in order to create a gap in front of them, in which
the agent who intends to change lane can merge. To this end, we introduce a turning
signal. As long as the turning signal Bt

n = 1 is active, the agent brakes and informs the
subsequently following agent nB(1−l(n))−1 on the targeted lane, which is more than L cells
on its targeted lane behind. This agent can then decide, based on the velocity difference
to agent n and the driving behaviour, to decelerate to create a gap. If the agent is currently
standing still (waiting in queue) it is also possible for the agent not to accelerate when the
leading vehicle started, to let the agent n merge in front. For all following simulations
in this paper, all agents will make use of this courtesy. In future simulations, only parts
of agents could make use of it while others don’t allow agents to merge before them. By
drawing such exceptions from a suitable probability distribution one could test the impact
of partial courtesy on traffic flow and travel time.
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With this, vehicles going straight through an intersection without turning can now be fully
simulated but for agents who attempt to turn, additional rules have to be defined.

4.2 Turning rules

For vehicles that want to turn, two points have to be considered. First, in reality, vehicles
that are turning or will turn soon drive slower than vehicles that just keep driving straight.
With lower speed, the drivers can better react to intercepting traffic and pedestrians that
are also crossing the street. It also makes driving more comfortable because turning with
higher speed results in higher forces affecting all passengers. Furthermore, drivers who
intend to turn left have to ensure that they do not interrupt crossing traffic. In the study of
Li et al. [2] left turning traffic in an intersection with an arrow traffic signal was analyzed.
There it was shown that even when there is no other interaction (no pedestrians or cross-
ing traffic) turning vehicles on average only drive at most vmax,turner ≈ 40 km

h ≈ 7 Cells
time steps .

In case of crossing pedestrians, this can even go down to 20 km
h ≈ 3 Cells

time steps depending
on the density of crossing pedestrians. Because pedestrians will not be simulated indi-
vidually and left turning with a normal (non-arrow) traffic signal should also be included
in the model, we will choose a value closer to the minimum value. The empirical time
requirement value for turning traffic was calculated in [31] and found to be significantly
higher than for straight going traffic. The final vmax,turner will be calculated later after the
rules for turning were introduced. Then the model will be calibrated in such a way that
the required time is about 1.3 seconds higher than for straight going traffic, in accordance
with the empirical findings from [31]. The decreased maximal velocity increases the time
requirement tB to approximate 3.01 time-steps.
Next, the turning agent n has to test if turning without disturbing the traffic flow it would
cross is possible. For that, the next agent n∗ that is still in front of the cell where the agent
n would cross its path has to be identified. The equation

∆xn∗(∆tn)< ˜dn∗+gsafe (34)

has to stay true for the respective agent. ∆xn∗(∆tn) is the expected distance the vehicle n∗

passes in the time ∆tn, the agent n needs to reach the turning point and ˜dn∗ is the current
number of cells the agent n∗ is away from the intersection cell. If Eq. 34 is true, the agent
n∗ is expected to be still before the intersection cell when the turning agent n arrives.
Otherwise, the agent will have already passed the cell and the next agent behind n∗− 1
will be tested until the first agent ñ∗ for which Eq. 34 is true is identified or no other agent
is within interaction range.
It has to be noted that ct

ñ∗ will be used to anticipate acceleration or deceleration of the
agent for the calculation of ∆xñ∗(∆tn). In the real world, the turning driver observes the
traffic flow the vehicle would cross while driving up to the turning point, so the driver has
gathered past information about its behaviour. The driver then, for example, could notice
that the vehicles are all decelerating which would imply that the traffic light turned yellow
or even red and then could use this information to judge the situation. The simulation
model is a Markov process of the first order, which means that to calculate the next time
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step and ∆xñ∗(∆tn) only the current situation is considered and so ct
ñ∗ reflects necessary

information for the agent n to make a realistic judgement of the situation in real-time. To
prevent the agent from being all-knowing it is only checked if ct

ñ∗ > vt
ñ∗ where ∆xñ∗(∆tn)

is calculated expecting that the agent ñ∗ will accelerate to vS
max, or ct

ñ∗ < vt
ñ∗ where it is

calculated expecting that the agent will decelerate to 0.
If no agent ñ∗ can be identified, then agent n is expected to be able to turn freely and the
agents drive accordingly. Else it has to be tested, if agent ñ∗ would have to decelerate
because of the agent n. Agent n is only allowed to turn if

d̃ñ∗ > ∆xñ∗(∆tn)+gsafe +∆xsafe(t+)+∆xL(τ̃) (35)

is true. Else the agent has to stop before reaching the intersection cell in accordance with

Eq. 26 to Eq. 28. τ̃ = dL+1−vt̃
n,anti

at
n
e is the number of time steps the agent n needs to finish

the turning manoeuvre and leave the cell where he crosses the flow. It depends on the
anticipated velocity of agent n at the time step it probably reaches the intersection cell t̃.
In this time the agent ñ∗ will cross the distance ∆xL(τ̃). Because multiple of these values
can only be guessed with more or less high accuracy, the agent ñ∗ has to be placed an
additional distance ∆xsafe(t+) away from the crossing point, depending on his speed. For
t+ ≥ 3 no accidents or forced deceleration occur, which is in accordance with the 3 s time
differents in [17]. In case of multiple lanes the agent n has to cross, one agent ñ∗ has do
be identified for each of these lanes and Eq. 35 has to be true for each of them.
This restriction now increases the required time value depending on the crossing flow. In
[31] it was found that the required time value should increase about 1.3 seconds for a
low crossing flow but it also fluctuates highly. To test the influence of crossing flow on
the required time value, an intersection where a left turning lane crosses straight going
traffic is simulated. Then multiple simulations were run, where the traffic flow on the
turning lane is higher than can pass the traffic light, while each time the traffic flow of the
crossing traffic is increased. Each simulation runs for 360,000 time steps (100 hours) and
the average required time value, as well as its standard derivation, are shown in Fig. 4.
One can see the significant increase in the required time value even for low and a higher
fluctuation for higher crossing flows. The required time value more than doubles for a
crossing flow greater than 400 vehicles

h , which directly translates to fewer vehicles passing
the traffic light within the same time frame. For very high crossing traffic flows only
the first turning vehicle —which enters the intersection and waits for an opportunity to
cross turn— can pass the intersection within one green phase. To prevent such little
flows in city traffic, most larger intersections have separate turning cycles where only the
two left-turning flows are allowed to drive (often with arrow traffic lights). For smaller
intersections without left turning only lanes, the two opposite streets often do not have
the same green cycle. There, one of the two lanes gets green for a few seconds to allow
turning first. Then both simultaneously have a green phase for some time and at the end
the other street has additional green time to allow turning.
Lastly for right turning traffic which is changing lanes over slip lanes, Eq. 35 has to be
slightly adapted. Slip lanes allow traffic to turn right without driving through the intersec-
tions. The last section of the lane is separated by other lanes of the street and it is often
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Figure 4 Required time value in dependency of the incoming crossing flow.

not controlled by traffic lights or only has simplified yellow-red phased ones. Instead, the
vehicle have to ensure that they only leave their lane when they are not disturbing the on-
going traffic flow they want to merge with. To prevent a distribution of the ongoing flow,
the vehicles are only allowed to merge if they do not force following vehicles to actively
brake. To ensure this, an additional distance ∆xv(vdiff) has to be added. This extension
depends on the expected velocity difference of the agent n∗ that intends to merge and the
vehicle that will follow the agent after the merging n∗−1:

∆xv(vdiff) =


∑

tdiff
i=0 max(vτ̃

n∗−1 + i ·at
n∗−1,vmax), for vτ̃

n∗−1 < ct
n∗−1

∑
tdiff
i=0 vτ̃

n∗−1, for vτ̃
n∗−1 = ct

n∗−1

∑
tdiff
i=0 max(vτ̃

n∗−1− i ·D,0), for vτ̃
n∗−1 > ct

n∗−1

(36)

with

tdiff =



max(
vτ̃

n∗−vτ̃

n∗−1
at

n∗
,0,) for vτ̃

n∗−1 < ct
n∗−1 & vτ̃

n∗−1 > vτ̃
n∗

max(
vτ̃

n∗−vτ̃

n∗−1
at

n∗
,0), for vτ̃

n∗−1 = ct
n∗−1 & vτ̃

n∗−1 > vτ̃
n∗

max(
vτ̃

n∗−vτ̃

n∗−1
D+at

n∗
,0), for vτ̃

n∗−1 > ct
n∗−1 & vτ̃

n∗−1 > vτ̃
n∗

0, for vτ̃
n∗−1 ≤ vτ̃

n∗

(37)

equation Eq. 35 changes to

d̃ñ∗ > ∆xñ∗(∆tn)+gsafe +∆xsafe(t+)+∆xL(τ̃)+∆xv(vdiff) . (38)

This has to be checked for all traffic the agent might merge with straight going, crossing,
or left turning opposite flow.
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If Eq. 38 is also checked for the traffic flow left-turning agents want to merge with and if
Eq. 35 is checked for the crossing flow of straight going vehicles, then intersections can
be simulated without traffic lights. In such a scenario, instead of traffic light checks, it
has to be tested whether the vehicle is allowed to interrupt all crossing flows (e.g. with
respect to agents having to give way to other agents to their right or priority assignments
of some lanes). Furthermore, without traffic lights to separate traffic and pedestrian flows,
the influence of pedestrian crossing the streets has to be considered [9].
With these additional rules, agents driving through an intersection can be fully simu-
lated in accordance with empirical data. Due to general limitations of cellular automata
simulations of agents, problems can arise where no agent can move any more, so-called
”deadlocks”. The following section will explain where deadlocks can occur and how to
prevent them.

5 Deadlock prevention

There are three possible deadlock situations within the proposed model. First, there are
left-turning vehicles, interrupting each other and thus stopping traffic in this intersection
completely. Secondly, traffic jams in front of an intersection that extend into the preceding
intersection and prevent other traffic flows from passing through it. Lastly, the third sit-
uation results from synchronized left-turning behaviour of multiple agents in a relatively
small area of multiple intersections.
The first deadlock situation is the easiest to understand and fix. When two agents with
opposite flow directions would want to turn in an intersection, they each prevent the other
one from turning by stopping within the crossing cell. In most intersections in real urban
traffic, two left-turning vehicles of opposite flows turn in front of each other instead of
behind or next to them, like in the model. To simulate this, the agents will act as if they
pass behind each other, even though they are not. Effectively this means that they ignore
other left-turning agents of the opposite flow while calculating if they can pass and while
crossing.
The second deadlock is a specific problem of urban traffic where the length of streets be-
tween two intersections is often very short, sometimes even only 100 to 200 m. A street
length of 150 m means that only around 20 vehicles (with an average occupation space of
7.5 m in a jam [12]) can queue in front of an intersection before the next vehicle will stop
within the following intersection. To prevent a queue from one traffic light to interrupt
traffic in the previous one, agents are only allowed to drive into the intersection when it
is to be expected that they can leave it. If there is an agent n+2 (predecessor of the pre-
decessor of agent n) within the interaction range of agent n and all three Eq. 39-Eq. 41 is
true, then it is expected that the agent n+1 will also brake and stop shortly after leaving
the intersection. This, in turn, creates a high risk of the agent n coming to a stop within the
intersection, which is to be prevented. So agent n is only allowed to enter the intersection
if one or more of these equations is not true or if no agent n+2 is within the interaction
range. Agent n+ 2 is considered here instead of n+ 1 because agent n has to decelerate
ahead of time to be able to stop before entering the intersection. This is not assured if
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only the (n+1) st agent is considered. In equation form, this means that agents are only
allowed to enter intersections if one of the three following equations does not hold true:

xt
n+2 +δ (vt

n+2)< 14 (39)
an+2 = 1 (40)
vn+2 < vfast (41)

The last deadlock situation is visualized in Fig. 5. It becomes apparent that no vehicle can
move because the first vehicle in every queue is an agent that intends to turn left but is
not able to because they would have to stop in the intersection. This is forbidden because
of the previous deadlock situation. Because the same holds true for all four intersections
no vehicle can move anymore. In reality, the drivers would simply change their direction
and drive straight or right to get to their intended destination over a slightly different
route. Agents, on the other hand, would wait an infinite amount of time for a space in the
queue to free themselves. This deadlock situation will be solved in the same way as in
[14], where the vehicle that stands in front of a green traffic light but does not move for a
long time is simply removed. This can be done because, as shown in [14] this deadlock
situation happens rarely enough that removing single agents does not significantly affect
the statistics. For this reason, agents that stand still more than two green phases are
removed from the simulation.

Figure 5 Deadlock situation three: One can see four intersections where in every intersection the first
vehicle wants to turn left but can’t because he then would have to stop in the intersection.
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6 Conclusion

This paper proposes a model to simulate the behaviour of drivers before and through
an intersection in accordance with empirical data while also incorporating realistic car
following times tB, jam propagation velocity vjam, and traffic outflow from a jam Fout.
The Lee et. al. model [18] was chosen as a basis for the proposed intersection model.
Most intersection models use an intersection area that can’t be entered if opposite flows
have entered their respective intersection area to recreate traffic crossing. Because of
the finite deceleration implemented in the Lee-model and the inability of these models
to simulate multiple lanes with multiple purposes (left-/right-turning or going straight
ahead), a new design for intersections is introduced. Afterwards, additional rules based
on the Lee-model were defined so that the agents could pass through these newly designed
intersections accident-free and in accordance with empirical traffic data.
In future works, based on the intersection model, urban networks will be created and
different behaviour based influences will be tested. For example, a driver who never
grants the curtsey of decelerating to make space for a lane changer or always judge their
situation pessimistically (never drive closer than the minimum safety distance) could be
implemented and their impact on the traffic flow analysed. Furthermore, p0, pd and vslow
will be chosen in a certain interval according to different distributions and the influence
of these distributions will be analysed.

Acknowledgements Part of the work on this paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information
by Resource-Constrained Analysis”, project B4.

References

[1] Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Traffic breakdown at a sig-
nal: classical theory versus the three-phase theory of city traffic. Jour-
nal of Statistical Mechanics: Theory and Experiment 2014(3), P03001 (2014).
doi:10.1088/1742-5468/2014/03/p03001

[2] Li, H., Li, S., Li, H., Qin, L., Li, S., Zhang, Z.: Modeling left-turn driving behavior
at signalized intersections with mixed traffic conditions. Mathematical Problems in
Engineering 2016(1), 1–11 (2016). doi:10.1155/2016/4015271

[3] Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: A cellular
automata approach. IEEE Communications Magazine 47(5), 142–150 (2009).
doi:10.1109/MCOM.2009.4939290

[4] Chopard, B., Luthi, P.O., Queloz, P.A.: Cellular automata model of car traffic in a
two-dimensional street network. Journal of Physics A: Mathematical and General
29(10), 2325–2336 (1996). doi:10.1088/0305-4470/29/10/012

http://dx.doi.org/10.1088/1742-5468/2014/03/p03001
http://dx.doi.org/10.1155/2016/4015271
http://dx.doi.org/10.1109/MCOM.2009.4939290
http://dx.doi.org/10.1088/0305-4470/29/10/012


Cellular Automata Intersection Model 23

[5] Bai, F., Sadagopan, N., Helmy, A.: The important framework for analyzing the
impact of mobility on performance of routing protocols for adhoc networks. Ad Hoc
Networks 1(4), 383–403 (2003). doi:10.1016/S1570-8705(03)00040-4

[6] Nagel, K., Stretz, P., Pieck, M., Donnelly, R., Barrett, C.L.: Transims traffic
flow characteristics (1997). URL https://arxiv.org/pdf/adap-org/
9710003

[7] Krautter, W., Bleile, T., Manstetten, D., Schwab, T.: Traffic simulation with artist.
In: Proceedings of Conference on Intelligent Transportation Systems, pp. 472–477
(1997). doi:10.1109/ITSC.1997.660520

[8] Robertson, I.: TRANSYT: a traffic network study tool. Road Research Laboratory
Report LR 253 (1969)

[9] Zhao, H.T., Yang, S., Chen, X.X.: Cellular automata model for ur-
ban road traffic flow considering pedestrian crossing street. Physica
A: Statistical Mechanics and its Applications 462, 1301–1313 (2016).
doi:10.1016/j.physa.2016.06.146

[10] van Aerde, M., Hellinga, B.R., Baker, M.R., Rakha, H.A.: Integration : An overview
of traffic simulation features. In: Transportation Research Board Annual Meeting,
pp. 1–14 (1996). URL https://pdfs.semanticscholar.org/5ba0/
8ab26cdaa90ad0eb7c37a71b7146622096c6.pdf

[11] Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing
traffic lights in a cellular automaton model for city traffic. Physical Review E 64(5
Pt 2), 056132 (2001). doi:10.1103/PhysRevE.64.056132

[12] Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Jour-
nal de Physique I 2(12), 2221–2229 (1992). doi:10.1051/jp1:1992277

[13] Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Towards a realistic
microscopic description of highway traffic. Journal of Physics A: Mathematical and
General 33(48), L477–L485 (2000). doi:10.1088/0305-4470/33/48/103

[14] Esser, J.: Simulation von Stadtverkehr auf der Basis zellularer Automaten. Disserta-
tion, Gerhard-Mercator-Universität-Gesamthochschule Duisburg, Duisburg (1997)

[15] Vasic, J., Ruskin, H.J.: A cellular automata-based network model for heterogeneous
traffic: Intersections, turns and their connection. In: Sirakoulis, G.C., Bandini, S.
(eds.) Cellular automata, Lecture Notes in Computer Science, vol. 7495, pp. 835–
844. Springer, Berlin (2012). doi:10.1007/978-3-642-33350-7 87

[16] Zhao, H.T., Liu, X.R., Chen, X.X., Lu, J.C.: Cellular automata model for traffic
flow at intersections in internet of vehicles. Physica A: Statistical Mechanics and its
Applications 494, 40–51 (2018). doi:10.1016/j.physa.2017.11.152

http://dx.doi.org/10.1016/S1570-8705(03)00040-4
https://arxiv.org/pdf/adap-org/9710003
https://arxiv.org/pdf/adap-org/9710003
http://dx.doi.org/10.1109/ITSC.1997.660520
http://dx.doi.org/10.1016/j.physa.2016.06.146
https://pdfs.semanticscholar.org/5ba0/8ab26cdaa90ad0eb7c37a71b7146622096c6.pdf
https://pdfs.semanticscholar.org/5ba0/8ab26cdaa90ad0eb7c37a71b7146622096c6.pdf
http://dx.doi.org/10.1103/PhysRevE.64.056132
http://dx.doi.org/10.1051/jp1:1992277
http://dx.doi.org/10.1088/0305-4470/33/48/103
http://dx.doi.org/10.1007/978-3-642-33350-7_87
http://dx.doi.org/10.1016/j.physa.2017.11.152


24 T. Vranken · M. Schreckenberg

[17] Jin, C.J., Wang, W., Jiang, R., Wang, H.: Cellular automaton simulations of a
four-leg intersection with two-phase signalization. International Journal of Mod-
ern Physics C 25(03), 1350099 (2014). doi:10.1142/S012918311350099X

[18] Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical restriction ver-
sus human overreaction triggering congested traffic states. Physical Review Letters
92(23), 238702 (2004). doi:10.1103/PhysRevLett.92.238702

[19] Kerner, B.S.: Breakdown in Traffic Networks. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017). doi:10.1007/978-3-662-54473-0

[20] Pottmeier, A., Thiemann, C., Schadschneider, A., Schreckenberg, M.: Mechani-
cal restriction versus human overreaction: Accident avoidance and two-lane traf-
fic simulations. In: Traffic And Granular Flow, pp. 503–508. Springer (2005).
doi:10.1007/978-3-540-47641-2 46

[21] Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Metastable states
in cellular automata for traffic flow. The European Physical Journal B 5(3), 793–800
(1998). doi:10.1007/s100510050504

[22] Habel, L., Schreckenberg, M.: Asymmetric lane change rules for a microscopic
highway traffic model. In: Cellular automata, Lecture Notes in Computer Science /
Theoretical Computer Science and General Issues, vol. 8751, pp. 620–629. Springer
(2014). doi:10.1007/978-3-319-11520-7 66

[23] Pottmeier, A.: Realistic cellular automaton model for synchronized two-lane traffic:
Simulation, validation, and applications. Dissertation, Universität Duisburg-Essen,
Duisburg (18.12.2007)

[24] Sparmann, U.: Spurwechselvorgänge auf zweispurigen BAB-Richtungsfahrbahnen.
In: Forschung Straßenbau und Straßenverkehrstechnik 263 (1978)

[25] Krauss, S., Wagner, P., Gawron, C.: Metastable states in a microscopic
model of traffic flow. Physical Review E 55(5), 5597–5602 (1997).
doi:10.1103/PhysRevE.55.5597
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