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Abstract - In this paper, we present a formulation for a multiscale model combining a social force based pedestrian 
movement including collision avoidance and a stochastic infection dynamics framework to evaluate the spread of 
multiple infectious diseases during air travel. We apply the multiscale model to evaluate pedestrian movement 
strategies that can reduce infection spread during air travel. The results are presented for airport lounge and airplane 
boarding and deplaning. Use of parallel computing to evaluate the vast parameter space created due to stochasticity 
and discretionary pedestrian behavior is addressed    
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1. Introduction 
Public transportation in general and air travel in particular have been identified as leading factors in 

the spread of infectious diseases; there is direct evidence for air travel related spread of infections such as 
influenza [1], SARS [2], measles [3] and norovirus [4]. Pedestrian movement within an airport and in 
airplanes is key to understanding and estimating the casual contacts between passengers and thereby 
understanding the infectious disease spread.  

We have formulated a multiphysics computational model [5, 6] that incorporates particle dynamics 
based pedestrian movement of travelers in transit hubs (e.g. airports), contact analysis and stochastic 
infectious disease spread, to frame and analyze transportation policies that can mitigate infectious disease 
spread. The high economic and public perception costs on the transportation sector due to pandemic events 
necessitates policy that addresses mitigation. We utilize this multiscale model for policy design to develop 
strategies that mitigate spread. 

2. Model Formulation 
In order to first determine the number of pedestrian-pedestrian and pedestrian-surface contacts, we model 
the dynamics of mobile pedestrians incorporating interactions with other pedestrians and stationary objects, 
like walls and chairs, as particles. The motion of pedestrians interacting with other pedestrians and 
stationary particles evolves through molecular dynamics-based social force formulation [7]. The force if
acting on pedestrian i (or particle) can be defined as: 

 
( )( ) ( ) ( )i ii i

i o ij
j i

dv mm v t v t f t
dt τ ≠

= − +∑
                          (1)  

with pedestrian position at a given time obtained by integration as ( )i ir t v dt= ∫   where ( )i
ov t  is the 

desired velocity of pedestrian and ( )iv t  is the actual velocity, im  is the mass andτ is the time constant. 
The momentum generated by a pedestrian’s intention results in a self-propulsion force that is balanced by 
a repulsion force ( )ijf t .  
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We also introduce location dependence to the desired velocity in the self-propulsion term as:          
( ) ( )( )1 1 1( ). 1 /i

o A i B i kv t e v v re r eγ δ= + − −   . Here 1e   is the direction of desired motion. Av  and i Bvγ   

are the deterministic and stochastic components of desired velocity, δ  is a distance constant such that at 
distance δ  between pedestrian i and k the desired velocity of pedestrian i is zero. The i Bvγ term accounts 
for walking speed variations due to age group and gender [8]. We also introduce path determination and 
obstacle avoidance into our model to create a realistic representation of pedestrian motion.  
Given the trajectory of pedestrians over time, the number of contacts of passenger i at time t can be 
evaluated as: , .i t ij ijm r λ= ∑ , where 0ijλ =   if ijr x>   and 1 /ij ijrλ =   if ijr x< . ijr  is the 
distance between pedestrian i and j, and x is a virus specific distance parameter. The probability that the 
susceptible pedestrian i at time t will become infected is computed by multiplying the number of contacts, 
𝑚𝑚𝑖𝑖,𝑡𝑡, with the respective transmission probability of each contact of pedestrian i at time t. Eventually the 
number of infected individuals will be counted for each time. 
Consider a population of size N consisting of I(t) infected and S(t) susceptibles at time t. A susceptible can 
become infected when coming into direct contact with an infected. However, the newly infected cannot be 
infective during the start of the incubation period of the illness. Moreover, the infection spread initiates due 
to the insertion of 𝑖𝑖𝑐𝑐0 infectives initially (𝑡𝑡0= 0) at their “c” days of infection, out of “d” incubation days. 
The probability that an infectious individual in the crowd meets other individuals is mi/N. Denote by 𝑝𝑝𝑐𝑐  
the probability that a contact between a susceptible and an infective results in infection of the susceptible. 
The number of newly infected by infective i at time t, a discrete variable is a Poisson probability distribution, 
with mean mi (t-1). pc.[Si (t-1)/N]. Therefore, the number of people infected at time t is obtained by: 
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Where 𝑚𝑚𝑖𝑖 is the number of contact of susceptibles with the infectious traveller i and 𝑝𝑝𝑐𝑐 the infection 
transmission probability. 

3. Results and Discussion 
Figure 1 shows the evolution of pedestrians at airport 
gate while (a) boarding, (b) deplaning and (c) at airport 
security check. The evolution of the particles is based 
on above formulation. We however perform numerous 
simulations using parallel algorithms on a 
supercomputing cluster to account for discretionary 
events and stochasticity in parameters like pedestrian 
speed. Aggregated information of pedestrian contacts 
from these simulations is used for modeling infectious 
disease spread based on Eq. 2 above. The contacts are 
defined based on time proximity and time spent. For 
example, for a contact based infectious disease like 
Ebola, a contact radius within touching distance (1 m) 
is used for the simulations while a larger contact radius 
of 2.1 m is used for diseases spread through aerosols 
like H1N1 influenza. This is based on studies that 
indicate fine particle spread over this distance due to expiratory events like coughing [9]. The probability 
of infection for different diseases is estimated based on viral shedding e.g. The H1N1 viral RNA level in 
nasal, oral or ocular shedding is used to construct corresponding probability profiles [10].              

Fig 1. Simulation snapshots for pedestrian 
movement for (a) deplaning (b) boarding (c) 
security check 
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The combined pedestrian dynamics – infection spread 
model is then used for parametric analysis of strategies 
that mitigate infectious disease spread. An example of the 
policy study is the effect of airplane size and layout on the 
disease spread. Does transporting same number of people 
using large or small airplanes help reduce spread? How 
does this change for diseases transmitted via coarse 
droplets (e.g. Ebola) Vs fine aerosols (e.g. SARS)? What 
effect does pedestrian movement during boarding and 
deplaning have in this conjunction? We find that smaller 
airplanes are more effective in reducing the number of 
contacts compared to larger airplanes. Figure 3 provides a 
comparison between different airplanes and different 
infectious diseases (Ebola, SARS and H1N1 influenza) for 
enplaning airplanes of different sizes when one infected 
passenger in an unknown location is traveling. Such maps 
can be effective in analysing policies for infection reduction. We have studied similar strategies for queue 
shape, the size of airport gate and various boarding and deplaning schemes. The final poster will show the 
variations of infection spread for various strategies. 
4. Conclusion 
 A multiscale computational model incorporating pedestrian dynamics and infection spread is 
presented. The model is used to study infection mitigation strategies for air travel. 

Acknowledgements 
Department of Transportation, Center for Advanced Transportation Mobility and National Science 
Foundation PRAC grant for partially supporting different parts of the research.   
References 
[1] M.R. Moser,T.R. Bender, H.S.Margolis, G.R. Noble, A.P. Kendal, and D.G. Ritter, An outbreak of 

influenza aboard a commercial airliner. American Journal of Epidemiology, 110, (1), 1979, pp.1–6. 
[2] S.J. Olsen, H.L.Chang, T.Y. Cheung, A.F.Y. Tang, T.L. Fisk, S.P.L.Ooi, and J. Lando, Transmission 

of the severe acute respiratory syndrome on aircraft. New England Journal of Medicine, Vol. 349, 
No.25, 2003, pp. 2416–2422. 

[3] K. Nelson, K. Marienau, C. Schembri and S. Redd, 2013. Measles transmission during air travel, United 
States, December 1, 2008–December 31. Travel Medicine and Infectious Disease, Vol. 11, No.2, 2011, 
pp. 81–89. 

[4] M.A. Widdowson, R. Glass, S. Monroe, R.S. Beard, J.W. Bateman, P. Lurie, and C. Johnson, Probable 
transmission of norovirus on an airplane. Jama, Vol. 293, No.15, 2005, pp. 1855–1860. 

[5] S. Namilae, A. Srinivasan, A. Mubayi, M. Scotch and R. Pahle , Self-propelled pedestrian dynamics 
model: Application to passenger movement and infection propagation in airplanes, Physica A Vol. 465, 
2017, 248–260 

[6] S Namilae, P Derjany, A. Mubayi, M. Scotch and A. Srinivasan, Multiscale Model For Infection 
Dynamics During Air Travel. Physical review E Vol 95, (2017), 052320  

[7] D. Helbing, and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, vol. 51, 
Jan. 1995, pp. 4282–4286. 

[8] J. Zębala, P. Ciępka, and A. Reza, Pedestrian acceleration and speeds. Problems of Forensic Sciences, 
Vol.91, 2012, pp. 227-234. 

[9] J.K. Gupta, C.H. Lin and Q Chen, Flow dynamics and characterization of a cough, Indoor Air, vol. 19, 
2009, pp. 517–525. 

[10] S.C. Paquette.et al Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, 
Mammary Gland Infection, and Pathogenesis by Regulating Host Responses, PLOS Pathogens, vol. 
11, Aug. 2015. 

Fig 2. Policy analysis map for airplane size 
effect on different infectious diseases. 
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