Numerical Study of Bottleneck Flow with Varying Corridor Width and Motivation Using a Speed-Based Model
DOI:
https://doi.org/10.17815/CD.2021.132Keywords:
pedestrians, bottleneck flow, speed-based model, motivationAbstract
In this study a simple speed-based model is employed to simulate an experiment of pedestrian bottleneck flow. The experiment revealed that the density near the bottleneck is influenced by the motivation of the pedestrians and the corridor width. In narrow corridors, distinct lanes are formed for pedestrians with low motivation. These lanes can disappear when the pedestrians have a high motivation to reach their target. We show that a speed-based model is - despite its relative simplicity- capable to reproduce the observed phenomena to a high degree.References
Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A.: Modelling of pedestrian and evacuation dynamics. Encyclopedia of Complexity and Systems Science pp. 1-22 (2018)
Chowdhury, D., Ludger, S., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Physics Reports 329(4-6), 199–329 (2000). doi:10.1016/s0370-1573(99)00117-9
Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73(4), 1067–1141 (2001). doi:10.1103/revmodphys.73.1067
Schadschneider, A., Kirchner, A., Nishinari, K.: CA approach to collective phenomena in pedestrian dynamics. Lecture Notes in Computer Science Cellular Automata p. 239–248 (2002). doi:10.1007/3-540-45830-1_23
Portz, A., Seyfried, A.: Analyzing stop-and-go waves by experiment and modeling. Pedestrian and Evacuation Dynamics p. 577–586 (2011). doi:10.1007/978-1-4419-9725-8_52
Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications, pp. 3142-3176. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_187
Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and planning B: planning and design 28(3), 361-383 (2001)
Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., Seyfried, A.: Jamming transitions in force-based models for pedestrian dynamics. Physical Review E 92(4) (2015). doi:10.1103/physreve.92.042809
Chraibi, M., Schadschneider, A., Seyfried, A.: On force-based modeling of pedestrian dynamics. Modeling, Simulation and Visual Analysis of Crowds The International Series in Video Computing p. 23–41 (2013). doi:10.1007/978-1-4614-8483-7_2
Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6) (2013). doi:10.1103/physreve.87.063305
Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425–442 (2011). doi:10.3934/nhm.2011.6.425
Kretz, T.: On oscillations in the social force model. Physica A: Statistical Mechanics and its Applications 438, 272–285 (2015). doi:10.1016/j.physa.2015.07.002
Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free speed model for pedestrian dynamics. In: Traffic and Granular Flow'15, pp. 225-232. Springer (2016)
Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transportation Science 39(2), 147-159 (2005)
Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transportation Science 43(3), 395-406 (2009)
Sieben, A., Schumann, J., Seyfried, A.: Collective phenomena in crowds—where pedestrian dynamics need social psychology. PLOS ONE 12(6), 1-19 (2017). doi:10.1371/journal.pone.0177328
Adrian, J., Seyfried, A., Sieben, A.: Crowds in front of bottlenecks at entrances from the perspective of physics and social psychology. Journal of The Royal Society Interface 17(165), 20190871 (2020). doi:10.1098/rsif.2019.0871
Daamen, W., Hoogendoorn, S.: Experimental research of pedestrian walking behavior. Transportation Research Record: Journal of the Transportation Research Board (1828), 20-30 (2003)
Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1), 1-24 (2005)
Garcimartín, A., Maza, D., Pastor, J.M., Parisi, D.R., Martín-Gómez, C., Zuriguel, I.: Redefining the role of obstacles in pedestrian evacuation. New Journal of Physics 20(12), 123025 (2018). doi:10.1088/1367-2630/aaf4ca
Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment 2006(10), P10014 (2006)
Zuriguel, I., Echeverría, I., Maza, D., Hidalgo, R.C., Martín-Gómez, C., Garcimartín, A.: Contact forces and dynamics of pedestrians evacuating a room: The column effect. Safety Science 121, 394–402 (2020). doi:10.1016/j.ssci.2019.09.014
Haghani, M., Sarvi, M., Shahhoseini, Z.: When 'push' does not come to 'shove': Revisiting 'faster is slower' in collective egress of human crowds. Transportation Research Part A: Policy and Practice 122, 51 (2019)
Haghani, M.: Empirical methods in pedestrian, crowd and evacuation dynamics: Part ii. field methods and controversial topics. Safety Science 129, 104760 (2020). doi:10.1016/j.ssci.2020.104760
Feliciani, C., Nishinari, K.: Measurement of congestion and intrinsic risk in pedestrian crowds. Transportation Research Part C: Emerging Technologies 91, 124–155 (2018). doi:10.1016/j.trc.2018.03.027
Fischer, M., Jankowiak, G., Wolfram, M.T.: Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media 15, 405 (2020). doi:10.3934/nhm.2020025
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000). doi:10.1038/35035023
Tajima, Y., Takimoto, K., Nagatani, T.: Scaling of pedestrian channel flow with a bottleneck. Physica A: Statistical Mechanics and its Applications 294(1-2), 257-268 (2001)
Nagatani, T.: Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck. Physica A: Statistical Mechanics and Its Applications 300(3-4), 558-566 (2001)
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507–525 (2001). doi:10.1016/s0378-4371(01)00141-8
Tang, M., Jia, H., Ran, B., Li, J.: Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model. Physica A: Statistical Mechanics and its Applications 453, 242–258 (2016). doi:10.1016/j.physa.2016.02.044
Parisi, D.R., Patterson, G.A.: Influence of bottleneck lengths and position on simulated pedestrian egress. Papers in Physics 9, 090001 (2017). doi:10.4279/pip.090001
Haghani, M., Sarvi, M.: Simulating pedestrian flow through narrow exits. Physics Letters A 383(2-3), 110–120 (2019). doi:10.1016/j.physleta.2018.10.029
Bandini, S., Crociani, L., Gorrini, A., Nishinari, K., Vizzari, G.: Unveiling the hidden dimension of pedestrian crowds: Introducing personal space and crowding into simulations. Fundamenta Informaticae 171(1-4), 19–38 (2019). doi:10.3233/fi-2020-1870
Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A: Statistical Mechanics and its Applications 324(3-4), 689–697 (2003). doi:10.1016/s0378-4371(03)00076-1
Huang, L., Wong, S., Zhang, M., Shu, C.W., Lam, W.H.: Revisiting hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological 43(1), 127–141 (2009). doi:10.1016/j.trb.2008.06.003
Graf, A.: Automated routing in pedestrian dynamics. Master Thesis (Fachhochschule Aachen, Campus Jülich) (2015)
Buchmüller, S., Weidmann, U.: Parameters of pedestrians, pedestrian traffic and walking facilities. IVT Schriftenreihe 132 (2006). doi:10.3929/ethz-b-000047950
Pedestrian data archive. https://ped.fz-juelich.de/da. Accessed: 2021-08-11
Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A: Statistical Mechanics and its Applications 389(9), 1902-1910 (2010)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jonas Rzezonka, Armin Seyfried, Ben Hein, Mohcine Chraibi, Andreas Schadschneider
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).