Cover Image

Inflow Process of Pedestrians to a Confined Space

Takahiro Ezaki, Kazumichi Ohtsuka, Mohcine Chraibi, Maik Boltes, Daichi Yanagisawa, Armin Seyfried, Andreas Schadschneider, Katsuhiro Nishinari

Abstract


To better design safe and comfortable urban spaces, understanding the nature of human crowd movement is important. However, precise interactions among pedestrians are difficult to measure in the presence of their complex decision-making processes and many related factors. While extensive studies on pedestrian flow through bottlenecks and corridors have been conducted, the dominant mode of interaction in these scenarios may not be relevant in different scenarios. Here, we attempt to decipher the factors that affect human reactions to other individuals from a different perspective. We conducted experiments employing the inflow process in which pedestrians successively enter a confined area (like an elevator) and look for a temporary position. In this process, pedestrians have a wider range of options regarding their motion than in the classical scenarios; therefore, other factors might become relevant. The preference of location is visualized by pedestrian density profiles obtained from recorded pedestrian trajectories. Non-trivial patterns of space acquisition, e.g., an apparent preference for positions near corners, were observed. This indicates the relevance of psychological and anticipative factors beyond the private sphere, which have not been deeply discussed so far in the literature on pedestrian dynamics. From the results, four major factors, which we call flow avoidance, distance cost, angle cost, and boundary preference, were suggested. We confirmed that a description of decision-making based on these factors can give a rise to realistic preference patterns, using a simple mathematical model. Our findings provide new perspectives and a baseline for considering the optimization of design and safety in crowded public areas and public transport carriers.


Keywords


pedestrian dynamics; inflow process; personal space

Full Text:

PDF

References


Altman, I.: The Environment and Social Behavior: Privacy, Personal Space, Territory, and Crowding. Brooks/Cole, California (1975)

Hillier, B., Penn, A., Grajewski, T., Xu, J.: Natural Movement: Or, configuration and attraction in urban pedestrian movement. Environment and Planning B: Planning and Design 20(1), 29-66 (1993). doi:10.1068/b200029

Schadschneider, A., Klingsch, W., Klüpfel, T., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: Empirical results, modeling and applications. Encyclopedia of Complexity and System Science 3, 3142-3176 (2009). doi:10.1007/978-0-387-30440-3

Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73(4), 1067-1141 (2001). doi:10.1103/RevModPhys.73.1067

Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1), 1-24 (2005). doi:10.1287/trsc.1040.0108

Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier, New York (2010)

Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3-4), 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8

Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. Journal of Statistical Mechanics 2006, P10001 (2006). doi:10.1088/1742-5468/2006/10/P10001

Nowak, S., Schadschneider, A.: Quantitative analysis of pedestrian counterflow in a cellular automaton model. Physical Review E 85, 066128 (2012). doi:10.1103/PhysRevE.85.066128

Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: An empirical study. Physical Review E 75(4), 046109 (2007). doi:10.1103/PhysRevE.75.046109

Yu, W., Johansson, A.: Modeling crowd turbulence by many-particle simulations. Physical Review E 76(4), 046105 (2007). doi:10.1103/PhysRevE.76.046105

Ando, K., Oto, H., Aoki, T.: Forecasting the flow of people [in Japanese]. Railway Research Review 45, 8-13 (1988)

Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transportation Science 39(2), 147-159 (2005). doi:10.1287/trsc.1040.0102

Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transportation Science 43(3), 395-406 (2009). doi:10.1287/trsc.1090.0263

Jelić, A., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: Fundamental diagrams. Physical Review E 85(3), 036111 (2012). doi:10.1103/PhysRevE.85.036111

Yanagisawa, D., Tomoeda, A., Nishinari, K.: Improvement of pedestrian flow by slow rhythm. Physical Review E 85(1), 016111 (2012). doi:10.1103/PhysRevE.85.016111

Moussaïd, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLOS Computational Biology 8(3), e1002442 (2012). doi:10.1371/journal.pcbi.1002442

Henderson, L.F.: The statistics of crowd fluids. Nature 229, 381-383 (1971). doi:10.1038/229381a0

Weidmann, U.: Transporttechnik der Fußgänger. Tech. rep., Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau, ETH Zürich (1993)

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLOS ONE 5(4), e10047 (2010). doi:10.1371/journal.pone.0010047

Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012). doi:10.1016/j.physa.2011.07.056

Ezaki, T., Ohtsuka, K., Yanagisawa, D., Nishinari, K.: Inflow process: A counterpart of evacuation. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow 2013, pp. 227-231 (2015). doi:10.1007/978-3-319-10629-8

Hall, E.: The Hidden Dimension. Anchor Press, New York (1962)

Little, K.B.: Personal space. Journal of Experimental Social Psychology 1(3), 237-247 (1965). doi:10.1016/0022-1031(65)90028-4

Sommer, R.: Studies in personal space. Sociometry 22(3), 247-260 (1959)

Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: Yacoubi, S.E., Chopard, B., Bandini, S. (eds.) Cellular Automata, pp. 492-501. Springer, Berlin (2006). doi:10.1007/11861201

Wąs, J.: Crowd dynamics modeling in the light of proxemic theories. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artifical Intelligence and Soft Computing, vol. 6114, pp. 683-688. Springer, Berlin (2010). doi:10.1007/978-3-642-13232-2

Manenti, L., Manzoni, S., Vizzari, G., Ohtsuka, K., Shimura, K.: An agent-based proxemic model for pedestrian and group dynamics: motivations and first experiments. In: Villatoro, D., Sichman, J.S. (eds.) Multi-Agent-Based Simulation XII, pp. 74-89. Springer, Berlin (2012). doi:10.1007/978-3-642-28400-7

Liu, X., Song, W., Fu, L., Lv, W., Fang, Z.: Typical features of pedestrian spatial distribution in the inflow process. Physics Letters, Section A: General, Atomic and Solid State Physics 380(17), 1526-1534 (2016). doi:10.1016/j.physleta.2016.02.028

Liu, X., Song, W., Fu, L., Fang, Z.: Experimental study of pedestrian inflow in a room with a separate entrance and exit. Physica A: Statistical Mechanics and its Applications 442, 224-238 (2015). doi:10.1016/j.physa.2015.09.026

Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127-133 (2013). doi:10.1016/j.neucom.2012.01.036

Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions. Journal of Statistical Mechanics 2011, P06004 (2011). doi:10.1088/1742-5468/2011/06/P06004

Yanagisawa, D., Kimura, A., Tomoeda, A., Nishi, R., Suma, Y., Ohtsuka, K., Nishinari, K.: Introduction of frictional and turning function for pedestrian outflow with an obstacle. Physical Review E 80(3), 036110 (2009). doi:10.1103/PhysRevE.80.036110

Argyle, M., Dean, J.: Eye-contact, distance and affiliation. Sociometry 28(3), 289-304 (1965). doi:10.2307/2786027

Worchel, S., Teddlie, C.: The experience of crowding: A two-factor theory. Journal of Personality and Social Psychology 34(1), 30-40 (1976). doi:10.1037/0022-3514.34.1.30

Evans, G.W., Wener, R.E.: Crowding and personal space invasion on the train: Please don't make me sit in the middle. Journal of Environmental Psychology 27, 90-94 (2007). doi:10.1016/j.jenvp.2006.10.002

Kaya, N., Burgess, B.: Territoriality: Seat preferences in different types of classroom arrangements. Environment and Behavior 39(6), 859-876 (2007). doi:10.1177/0013916506298798

Bode, N.W.F., Holl, S., Mehner, W., Seyfried, A.: Disentangling the impact of social groups on response times and movement dynamics in evacuations. PLOS ONE 10(3), e0121227 (2015). doi:10.1371/journal.pone.0121227

Gorrini, A., Bandini, S., Vizzari, G.: Empirical investigation on pedestrian crowd dynamics and grouping. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow 2013, pp. 83-91 (2015). doi:10.1007/978-3-319-10629-8

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-90 (2000). doi:10.1038/35035023

Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72(2), 026112 (2005). doi:10.1103/PhysRevE.72.026112

Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010). doi:10.1103/PhysRevE.82.046111

Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications 312(1-2), 260-276 (2002). doi:10.1016/S0378-4371(02)00857-9




DOI: http://dx.doi.org/10.17815/CD.2016.4

Copyright (c) 2016 Takahiro Ezaki, Kazumichi Ohtsuka, Mohcine Chraibi, Maik Boltes, Daichi Yanagisawa, Armin Seyfried, Andreas Schadschneider, Katsuhiro Nishinari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.