Social Distancing with the Optimal Steps Model

Christina Maria Mayr, Gerta Köster

Abstract


With the Covid-19 pandemic, an urgent need has arisen to simulate social distancing. The Optimal Steps Model (OSM) is a pedestrian locomotion model that operationalizes an individual's need for personal space. We present new parameter values for personal space in the OSM to simulate social distancing in the pedestrian dynamics simulator Vadere. Our approach is pragmatic. We consider two use cases: in the first, we demand that a set social distance must never be violated. In the second the social distance can be violated temporarily for less than 10s. For each use case we conduct simulation studies in a typical bottleneck scenario and measure contact times, that is, violations of the social distance rule.
We conduct regression analysis to assess how the parameter choice depends on the desired social distance and the corridor width.
We find that evacuation time increases linearly with the width of the repulsion potential, which is an analogy to physics modeling the strength of the need for personal space. The evacuation time decreases linearly with larger corridor width. The influence of the corridor width on the evacuation time is smaller than the influence of the range of the repulsion, that is, the need for personal space. If the repulsion is too strong, we observe clogging effects.  
Our regression formulas enable Vadere users to conduct their own studies without understanding the intricacies of the OSM implementation and without extensive parameter adjustment.


Keywords


optimal steps model (OSM); social distancing; bottleneck; parameter adaption; locomotion modeling; Vadere simulation framework

Full Text:

PDF

References


Pouw, C.A.S., Toschi, F., van Schadewijk, F., Corbetta, A.: Monitoring physical distancing for crowd management: Real-time trajectory and group analysis 15(10). doi:10.1371/journal.pone.0240963

Echeverría-Huarte, I., Garcimartín, A., Hidalgo, R.C., Martín-Gómez, C., Zuriguel, I.: Estimating density limits for walking pedestrians keeping a safe interpersonal distancing. Scientific Reports 11(1) (2021). doi:10.1038/s41598-020-79454-0

Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transportation Science 43, 395-406 (2009). doi:10.1287/trsc.1090.0263

Tian, W., Song, W., Ma, J., Fang, Z., Seyfried, A., Liddle, J.: Experimental study of pedestrian behaviors in a corridor based on digital image processing. Fire Safety Journal 47, 8-15 (2012). doi:10.1016/j.firesaf.2011.09.005

Ren, X., Zhang, J., Cao, S., Song, W.: Experimental study on elderly pedestrians passing through bottlenecks. Journal of Statistical Mechanics: Theory and Experiment 2019(12), 123204 (2019). doi:10.1088/1742-5468/ab4fdf

Teng Zhang, T., Zhang, X., Huang, S., Li, C., Lu, S.: Collective behavior of mice passing through an exit under panic. Physica A: Statistical Mechanics and its Applications 496, 233-242 (2018). doi:10.1016/j.physa.2017.12.055

Ronchi, E., Lovreglio, R.: Exposed: An occupant exposure model for confined spaces to retrofit crowd models during a pandemic. Safety Science 130(104834) (2020). doi:10.1016/j.ssci.2020.104834

Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, Modeling, Simulation and Applications, vol. 12, 1st edn. Springer International Publishing (2014). doi:10.1007/978-3-319-06620-2

Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6), 063305 (2013). doi:10.1103/PhysRevE.87.063305

Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 10, 271-288 (2007). doi:10.1142/S0219525907001355

Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72, 026112 (2005). doi:10.1103/PhysRevE.72.026112

Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnár-farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-352 (2005). doi:10.1177/0037549705052772

Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A: Statistical Mechanics and its Applications 388(17), 3600-3608 (2009). doi:10.1016/j.physa.2009.05.027

Ratsamee, P., Mae, Y., Ohara, K., Takubo, T., Arai, T.: Modified social force model with face pose for human collision avoidance. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 215-216 (2012). doi:10.1145/2157689.2157762

Yang, X., Yang, X., Li, Y., Zhang, J., Kang, Y.: Obstacle avoidance in the improved social force model based on ant colony optimization during pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 583 (2021). doi:10.1016/j.physa.2021.126256

Harweg, T., Bachmann, D., Weichert, F.: Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment. Journal of Public Health 1 (2021). doi:10.1007/s10389-021-01489-y

Sajjadi, S., Hashemi, A., Ghanbarnejad, F.: Social distancing in pedestrian dynamics and its effect on disease spreading. Physical Review E 104(1) (2021). doi:10.1103/PhysRevE.104.014313

Kretz, T., Lohmiller, J., Sukennik, P.: Some indications on how to calibrate the social force model of pedestrian dynamics. Transportation Research Record 2672(20), 228-238 (2018). doi:10.1177/0361198118786641

Dias, C., Lovreglio, R.: Calibrating cellular automaton models for pedestrians walking through corners. Physics Letters A 382(19), 1255-1261 (2018). doi:10.1016/j.physleta.2018.03.022

Lubaś, R., Porzycki, J., Wɡs, J., Mycek, M.: Validation and verification of ca-based pedestrian dynamics models. Journal of Cellular Automata 11, 285-298 (2016)

Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment 2004(10), P10011 (2004). doi:10.1088/1742-5468/2004/10/P10011

Lovreglio, R., Ronchi, E., Nilsson, D.: Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization. Physica A: Statistical Mechanics and its Applications 438, 308-320 (2015). doi:10.1016/j.physa.2015.06.040

Kretz, T.: Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009(03), P03012 (2009). doi:10.1088/1742-5468/2009/03/P03012

Dias, C., Abdullah, M., Sarvi, M., Lovreglio, R., Alhajyaseen, W.: Modeling and simulation of pedestrian movement planning around corners. Sustainability 11(19) (2019). doi:10.3390/su11195501

Taherifar, N., Hamedmoghadam, H., Sree, S., Saberi, M.: A macroscopic approach for calibration and validation of a modified social force model for bidirectional pedestrian streams. Transportmetrica A: Transport Science 15(2), 1637-1661 (2019). doi:10.1080/23249935.2019.1636156

Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E 86(4), 046108 (2012). doi:10.1103/PhysRevE.86.046108

von Sivers, I., Köster, G.: How stride adaptation in pedestrian models improves navigation. arXiv 1401.7838(v1) (2014). URL http://arxiv.org/abs/1401.7838v1

von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological 74, 104-117 (2015). doi:10.1016/j.trb.2015.01.009

von Sivers, I., Templeton, A., Künzner, F., Köster, G., Drury, J., Philippides, A., Neckel, T., Bungartz, H.J.: Modelling social identification and helping in evacuation simulation 1602.00805(v1). URL http://arxiv.org/abs/1602.00805. Submitted to Safety Science

Zeng, Y., Song, W., Huo, F., Vizzari, G.: Modeling evacuation dynamics on stairs by an extended optimal steps model. Simulation Modelling Practice and Theory 84, 177-189 (2018). doi:10.1016/j.simpat.2018.02.001

Covid-19: physical distancing. URL https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing. (15th September 2021)

How to protect yourself & others. URL https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html. (15th September 2021)

Physical distancing for coronavirus (covid-19). URL https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/physical-distancing-for-coronavirus-covid-19. (15th September 2021)

Covid-19-hygienemaßnahmen hinweise für nicht-medizinische einsatzkräfte. URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Hygienemassnahmen_Einsatzkraefte.pdf?__blob=publicationFile. (15th September 2021)

How to stop the spread of coronavirus (covid-19). URL https://www.gov.uk/government/publications/how-to-stop-the-spread-of-coronavirus-covid-19/how-to-stop-the-spread-of-coronavirus-covid-19. (15th September 2021)

Kleinmeier, B., Zönnchen, B., Gödel, M., Köster, G.: Vadere: An open-source simulation framework to promote interdisciplinary understanding. Collective Dynamics 4 (2019). doi:10.17815/CD.2019.21

Hall, E.T.: The Hidden Dimension. Doubleday, New York (1966)




DOI: http://dx.doi.org/10.17815/CD.2021.116

Copyright (c) 2021 Christina Maria Mayr, Gerta Köster

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.