Optimising Pedestrian Flow Around Large Stadiums

Yuming Dong, Xiaolu Jia, Daichi Yanagisawa, Katsuhiro Nishinari


This study proposes a method that combines the cellular automaton model and the differential evolution algorithm for optimising pedestrian flow around large stadiums. A miniature version of a large stadium and its surrounding areas is constructed via the cellular automaton model. Special mechanisms are applied to influence the behaviour of an agent that leaves from a certain stadium gate. The agent may be attracted to a nearby business facility and/or guided to uncongested areas. The differential evolution algorithm is then used to determine the optimal probabilities of the influencing agents for each stadium gate. The main goal is to reduce the evacuation time, and other goals such as reducing the costs for the influencing agents’ behaviours and the individual evacuation time are also considered. We found that, although they worked differently in different scenarios, the attraction and guidance of agents significantly reduced the evacuation time. The optimal evacuation time was achieved with moderate attraction to the business facilities and strong guidance to the detouring route. The results demonstrate that the proposed method can provide a goal-dependent, exit-specific strategy that is otherwise hard to acquire for optimising pedestrian flow.


cellular automaton; differential evolution; pedestrian simulation; optimisation; evacuation

Full Text:



Gwynne, S., Galea, E., Owen, M., Lawrence, P.J., Filippidis, L.: A review of the methodologies used in evacuation modelling. Fire and materials 23(6), 383-388 (1999). doi:cz9k2c

Sime, J.D.: An occupant response shelter escape time (orset) model. Safety science 38(2), 109-125 (2001). doi:10.1016/S0925-7535(00)00062-X

Yang, L., Zhao, D., Li, J., Fang, T.: Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment 40(3), 411-415 (2005). doi:10.1016/j.buildenv.2004.08.005

Wu, Y., Kang, J., Wang, C.: A crowd route choice evacuation model in large indoor building spaces. Frontiers of architectural research 7(2), 135-150 (2018). doi:10.1016/j.foar.2018.03.003

Jeon, G.Y., Hong, W.H.: An experimental study on how phosphorescent guidance equipment influences on evacuation in impaired visibility. Journal of loss Prevention in the Process Industries 22(6), 934-942 (2009). doi:10.1016/j.jlp.2009.08.008

Kobes, M., Helsloot, I., De Vries, B., Post, J.G., Oberijé, N., Groenewegen, K.: Way finding during fire evacuation; an analysis of unannounced fire drills in a hotel at night. Building and Environment 45(3), 537-548 (2010). doi:10.1016/j.buildenv.2009.07.004

Chu, M.L., Law, K.H.: Incorporating individual behavior, knowledge, and roles in simulating evacuation. Fire technology 55(2), 437-464 (2019). doi:10.1007/s10694-018-0747-6

Lujak, M., Billhardt, H., Dunkel, J., Fernández, A., Hermoso, R., Ossowski, S.: A distributed architecture for real-time evacuation guidance in large smart buildings. Computer Science and Information Systems 14(1), 257-282 (2017). doi:10.2298/CSIS161014002L

Tsiftsis, A., Georgoudas, I.G., Sirakoulis, G.C.: Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation. IEEE Systems Journal 10(2), 649-660 (2015). doi:10.1109/JSYST.2014.2370455

Yoo, B., Choi, S.D.: Emergency evacuation plan for hazardous chemicals leakage accidents using gis-based risk analysis techniques in south korea. International journal of environmental research and public health 16(11), 1948 (2019). doi:10.3390/ijerph16111948

Liu, S., Liu, J., Wei, W.: Simulation of crowd evacuation behaviour in outdoor public places: A model based on shanghai stampede. International Journal of Simulation Modelling 18(1), 86-99 (2019). doi:10.2507/IJSIMM18(1)464

Crociani, L., Vizzari, G., Yanagisawa, D., Nishinari, K., Bandini, S.: Route choice in pedestrian simulation: Design and evaluation of a model based on empirical observations. Intelligenza Artificiale 10(2), 163-182 (2016). doi:10.3233/IA-160102

Yu, B.: Consideration of tactical decisions in microscopic pedestrian simulation: Algorithm and experiments. Transportation research part C: emerging technologies 119, 102742 (2020). doi:10.1016/j.trc.2020.102742

Lopez-Carmona, M.A., Garcia, A.P.: Cellevac: An adaptive guidance system for crowd evacuation through behavioral optimization. Safety science 139, 105215 (2021). doi:10.1016/j.ssci.2021.105215

Molyneaux, N., Scarinci, R., Bierlaire, M.: Design and analysis of control strategies for pedestrian flows. Transportation 48(4), 1767-1807 (2021). doi:10.1007/s11116-020-10111-1

Zhao, Y., Li, M., Lu, X., Tian, L., Yu, Z., Huang, K., Wang, Y., Li, T.: Optimal layout design of obstacles for panic evacuation using differential evolution. Physica A: Statistical Mechanics and its Applications 465, 175-194 (2017). doi:10.1016/j.physa.2016.08.021

Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE Transactions on information and systems 87(3), 726-732 (2004)

Huang, K., Zheng, X., Cheng, Y., Yang, Y.: Behavior-based cellular automaton model for pedestrian dynamics. Applied Mathematics and Computation 292, 417-424 (2017). doi:10.1016/j.amc.2016.07.002

Zheng, Y., Li, X., Zhu, N., Jia, B., Jiang, R.: Evacuation dynamics with smoking diffusion in three dimension based on an extended floor-field model. Physica A: Statistical Mechanics and its Applications 507, 414-426 (2018). doi:10.1016/j.physa.2018.05.020

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3-4), 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8

Zhong, J., Luo, L., Cai, W., Lees, M.: Automatic rule identification for agent-based crowd models through gene expression programming. In: Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, pp. 1125-1132 (2014)

Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11(4), 341-359 (1997). doi:10.1023/A:1008202821328

Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters 17(1), 93-105 (2003). doi:10.1023/A:1022995128597

Zhang, Y., Gong, D.w., Gao, X.z., Tian, T., Sun, X.y.: Binary differential evolution with self-learning for multi-objective feature selection. Information Sciences 507, 67-85 (2020). doi:10.1016/j.ins.2019.08.040

DOI: http://dx.doi.org/10.17815/CD.2021.117

Copyright (c) 2021 Yuming Dong, Xiaolu Jia, Daichi Yanagisawa, Katsuhiro Nishinari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.