Initiating Lane and Band Formation in Heterogeneous Pedestrian Dynamics
DOI:
https://doi.org/10.17815/CD.2021.129Keywords:
pedestrian and evacuation dynamics, static and dynamic heterogeneity, phase transition, collective dynamics, lane formation, band formation, simulationAbstract
Self-avoiding agents such as pedestrians or road vehicles can exhibit different types of collective and coordinated dynamics. Prominent examples are stop-and-go waves and lane formation, or nonuniform patterns and ordered structures at bottlenecks and intersections. Non-linear effects, phase transitions, and metastability in the collective dynamics of interacting agents raise interesting theoretical questions. Besides scientific interests, understanding and controlling collective performances from individual interaction rules is fundamental to authorities. In this contribution, we show using a two-species agent-based model that heterogeneity can generically initiate segregation and spontaneous formation of lanes and bands. Two universal heterogeneity mechanisms are identified. In the first one, we attribute statically two different values to the parameters of the two types of agents. We aim here to model static heterogeneous individual characteristics. In the second model, we attribute dynamically two different values for the parameters according to the type of the closest agent in front. In contrast to the first model for which the heterogeneity lies statically in agent characteristics, we aim to model dynamic heterogeneity in the interactions. Simulation results show that self-organized lane and band formations spontaneously occur when the heterogeneity factors are sufficiently high. More precisely, we observe the emergence of longitudinal lanes when the heterogeneity lies in the agents when transversal bands arise if we assume heterogeneity in the interactions. The different organizations of the flow highly influence the system's performance. Lane patterns significantly improve the flow, while band formation acting as gridlocks result in lower performance.References
Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67, 056122 (2003). doi:10.1103/PhysRevE.67.056122
Zuriguel, I., Parisi, D.R., Hidalgo, R.C., Lozano, C., Janda, A., Gago, P.A., Peralta, J.P., Ferrer, L.M., Pugnaloni, L.A., Clément, E.: Clogging transition of many-particle systems flowing through bottlenecks. Sci. Rep. 4, 7324 (2014). doi:10.1038/srep07324
Nicolas, A., Bouzat, S., Kuperman, M.N.: Pedestrian flows through a narrow doorway: Effect of individual behaviours on the global flow and microscopic dynamics. Transp. Res. Part B Meth. 99, 30-43 (2017). doi:10.1016/j.trb.2017.01.008
Xu, Q., Chraibi, M., Seyfried, A.: Prolonged clogs in bottleneck simulations for pedestrian dynamics. Physica A 573, 125934 (2021). doi:10.1016/j.physa.2021.125934
Cristìn, J., Méndez, V., Campos, D.: General scaling in bidirectional flows of self-avoiding agents. Sci. Rep. 9, 18488 (2019). doi:10.1038/s41598-019-54977-3
Goldsztein, G.H.: Self-organization when pedestrians move in opposite directions. multi-lane circular track model. Appl. Sci. 10(2), 563 (2020). doi:10.3390/app10020563
Helbing, D., Farkas, I., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84(6), 1240-1243 (2000). doi:10.1103/PhysRevLett.84.1240
Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260-276 (2002). doi:10.1016/S0378-4371(02)00857-9
Bain, N., Bartolo, D.: Dynamic response and hydrodynamics of polarized crowds. Science 363(6422), 46-49 (2019). doi:10.1126/science.aat9891
Friesen, M., Gottschalk, H., Rüdiger, B., Tordeux, A.: Spontaneous wave formation in stochastic self-driven particle systems. SIAM J. Appl. Math. 81(3), 853-870 (2021). doi:10.1137/20M1315567
Stanley, H.: Non-equilibrium physics: Freezing by heating. Nature 404, 718 (2000). doi:10.1038/35008188
Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp. Sci. 39(1), 1-24 (2005). doi:10.1287/trsc.1040.0108
Helbing, D., Johansson, A.: Pedestrian, Crowd and Evacuation Dynamics, pp. 6476-6495. Springer New York (2009). doi:10.1007/978-0-387-30440-3_382
Cividini, J., Appert-Rolland, C., Hilhorst, H.J.: Diagonal patterns and chevron effect in intersecting traffic flows. EPL 102(2), 20002 (2013). doi:10.1209/0295-5075/102/20002
Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4-6), 199-329 (2000). doi:10.1016/S0370-1573(99)00117-9
Bellomo, N., Piccoli, B., Tosin, A.: Modeling crowd dynamics from a complex system viewpoint. Math. Models Methods Appl. Sci. 22(supp02), 1230004 (2012). doi:10.1142/S0218202512300049
Boltes, M., Zhang, J., Tordeux, A., Schadschneider, A., Seyfried, A.: Empirical Results of Pedestrian and Evacuation Dynamics, pp. 1-29. Springer, Berlin, Heidelberg (2018). doi:10.1007/978-1-4939-8763-4_706
Hermann, G., Touboul, J.: Heterogeneous connections induce oscillations in large-scale networks. Phys. Rev. Lett. 109, 018702 (2012). doi:10.1103/PhysRevLett.109.018702
Moussaïd, M., Kämmer, J.E., Analytis, P.P., Neth, H.: Social influence and the collective dynamics of opinion formation. PLOS ONE 8(11), 1-8 (2013). doi:10.1371/journal.pone.0078433
Touboul, J.D.: The hipster effect: When anti-conformists all look the same. Discrete Continuous Dyn. Syst. Ser. B 24, 4379 (2019). doi:10.3934/dcdsb.2019124
Shahhoseini, Z., Sarvi, M.: Collective movements of pedestrians: How we can learn from simple experiments with non-human (ant) crowds. PLOS ONE 12, 1-20 (2017). doi:10.1371/journal.pone.0182913
Needleman, D., Dogic, Z.: Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2(9), 1-14 (2017). doi:10.1038/natrevmats.2017.48
Cerotti, D., Distefano, S., Merlino, G., Puliafito, A.: A crowd-cooperative approach for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 18(6), 1529-1539 (2017). doi:10.1109/TITS.2016.2609606
Nakayama, A., Hasebe, K., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71, 036121 (2005). doi:10.1103/PhysRevE.71.036121
Moussaïd, M., Guillot, E., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLOS Comput. Biol. 8(3), 1-10 (2012). doi:10.1371/journal.pcbi.1002442
Feliciani, C., Murakami, H., Nishinari, K.: A universal function for capacity of bidirectional pedestrian streams: Filling the gaps in the literature. PLOS ONE 13, 1-31 (2018). doi:10.1371/journal.pone.0208496
Fujita, A., Feliciani, C., Yanagisawa, D., Nishinari, K.: Traffic flow in a crowd of pedestrians walking at different speeds. Phys. Rev. E 99, 062307 (2019). doi:10.1103/PhysRevE.99.062307
Sun, Y.: Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds. Physica A 549, 124295 (2020). doi:10.1016/j.physa.2020.124295
Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., Rus, D.: Social behavior for autonomous vehicles. Proc. Natl. Acad. Sci. U.S.A. 116(50), 24972-24978 (2019). doi:10.1073/pnas.1820676116
Stern, R.E., Cui, S., Monache, M.L.D., Bhadani, R., Bunting, M., Churchill, M., Hamilton, N., Haulcy, R., Pohlmann, H., Wu, F., Piccoli, B., Seibold, B., Sprinkle, J., Work, D.B.: Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transp. Res. Part C Emerg. Technol. 89, 205-221 (2018). doi:10.1016/j.trc.2018.02.005
Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free speed model for pedestrian dynamics. In: Traffic and Granular Flow '15, pp. 225-232. Springer, Cham (2016). doi:10.1007/978-3-319-33482-0_29
Krüsemann, H., Godec, A., Metzler, R.: First-passage statistics for aging diffusion in systems with annealed and quenched disorder. Phys. Rev. E 89(4), 040101 (2014). doi:10.1103/PhysRevE.89.040101
Tateishi, A., Ribeiro, H., Sandev, T., Petreska, I., Lenzi, E.: Quenched and annealed disorder mechanisms in comb models with fractional operators. Phys. Rev. E 101(2), 022135 (2020). doi:10.1103/PhysRevE.101.022135
Rex, M., Löwen, H.: Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization. Phys. Rev. E 75, 051402 (2007). doi:10.1103/PhysRevE.75.051402
Coville, F.V.: The influence of cold in stimulating the growth of plants. J. Agric. Res 20(2), 151-160 (1920). doi:10.1073/pnas.6.7.434
L. Radzihovsky, N.C.: Comment on "freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 90, 189603 (2003). doi:10.1103/physrevlett.90.189603
Borchers, N., Pleimling, M., Zia, R.K.: Non-equilibrium statistical mechanics of a two-temperature ising ring with conserved dynamics. Phys. Rev. E 90, 062113 (2014). doi:10.1103/PhysRevE.90.062113
Jejjala, V., Kavic, M., Minic, D., Tze, C.H.: The Big Bang as the ultimate traffic jam. Int. J. Mod. Phys. D 18, 2257 (2009). doi:10.1142/S021827180901593X
Zia, R., Praestgaard, E., Mouritsen, O.: Getting more from pushing less: Negative specific heat and conductivity in non-equilibrium steady states. Am. J. Phys. 70, 384 (2002). doi:10.1119/1.1427088
Sordal, V., Bergli, J., Galperin, Y.: Cooling by heating: restoration of the third law of thermodynamics. Phys. Rev. E 93, 032102 (2016). doi:10.1103/PhysRevE.93.032102
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Basma Khelfa, Raphael Korbmacher, Andreas Schadschneider, Antoine Tordeux
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).