Numerical Study of Bottleneck Flow with Varying Corridor Width and Motivation Using a Speed-Based Model


  • Jonas Rzezonka Institute for Advanced Simulation, Forschungszentrum Jülich, Germany and Institute for Theoretical Physics, University of Cologne, Germany
  • Armin Seyfried Institute for Advanced Simulation, Forschungszentrum Jülich, Germany and School of Architecture and Civil Engineering, University of Wuppertal, Germany
  • Ben Hein School of Architecture and Civil Engineering, University of Wuppertal, Germany
  • Mohcine Chraibi Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
  • Andreas Schadschneider Institute for Theoretical Physics, University of Cologne, Germany



pedestrians, bottleneck flow, speed-based model, motivation


In this study a simple speed-based model is employed to simulate an experiment of pedestrian bottleneck flow. The experiment revealed that the density near the bottleneck is influenced by the motivation of the pedestrians and the corridor width. In narrow corridors, distinct lanes are formed for pedestrians with low motivation. These lanes can disappear when the pedestrians have a high motivation to reach their target. We show that a speed-based model is - despite its relative simplicity- capable to reproduce the observed phenomena to a high degree.


Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A.: Modelling of pedestrian and evacuation dynamics. Encyclopedia of Complexity and Systems Science pp. 1-22 (2018)

Chowdhury, D., Ludger, S., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Physics Reports 329(4-6), 199–329 (2000). doi:10.1016/s0370-1573(99)00117-9

Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73(4), 1067–1141 (2001). doi:10.1103/revmodphys.73.1067

Schadschneider, A., Kirchner, A., Nishinari, K.: CA approach to collective phenomena in pedestrian dynamics. Lecture Notes in Computer Science Cellular Automata p. 239–248 (2002). doi:10.1007/3-540-45830-1_23

Portz, A., Seyfried, A.: Analyzing stop-and-go waves by experiment and modeling. Pedestrian and Evacuation Dynamics p. 577–586 (2011). doi:10.1007/978-1-4419-9725-8_52

Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications, pp. 3142-3176. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_187

Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and planning B: planning and design 28(3), 361-383 (2001)

Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., Seyfried, A.: Jamming transitions in force-based models for pedestrian dynamics. Physical Review E 92(4) (2015). doi:10.1103/physreve.92.042809

Chraibi, M., Schadschneider, A., Seyfried, A.: On force-based modeling of pedestrian dynamics. Modeling, Simulation and Visual Analysis of Crowds The International Series in Video Computing p. 23–41 (2013). doi:10.1007/978-1-4614-8483-7_2

Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6) (2013). doi:10.1103/physreve.87.063305

Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425–442 (2011). doi:10.3934/nhm.2011.6.425

Kretz, T.: On oscillations in the social force model. Physica A: Statistical Mechanics and its Applications 438, 272–285 (2015). doi:10.1016/j.physa.2015.07.002

Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free speed model for pedestrian dynamics. In: Traffic and Granular Flow'15, pp. 225-232. Springer (2016)

Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transportation Science 39(2), 147-159 (2005)

Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transportation Science 43(3), 395-406 (2009)

Sieben, A., Schumann, J., Seyfried, A.: Collective phenomena in crowds—where pedestrian dynamics need social psychology. PLOS ONE 12(6), 1-19 (2017). doi:10.1371/journal.pone.0177328

Adrian, J., Seyfried, A., Sieben, A.: Crowds in front of bottlenecks at entrances from the perspective of physics and social psychology. Journal of The Royal Society Interface 17(165), 20190871 (2020). doi:10.1098/rsif.2019.0871

Daamen, W., Hoogendoorn, S.: Experimental research of pedestrian walking behavior. Transportation Research Record: Journal of the Transportation Research Board (1828), 20-30 (2003)

Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1), 1-24 (2005)

Garcimartín, A., Maza, D., Pastor, J.M., Parisi, D.R., Martín-Gómez, C., Zuriguel, I.: Redefining the role of obstacles in pedestrian evacuation. New Journal of Physics 20(12), 123025 (2018). doi:10.1088/1367-2630/aaf4ca

Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment 2006(10), P10014 (2006)

Zuriguel, I., Echeverría, I., Maza, D., Hidalgo, R.C., Martín-Gómez, C., Garcimartín, A.: Contact forces and dynamics of pedestrians evacuating a room: The column effect. Safety Science 121, 394–402 (2020). doi:10.1016/j.ssci.2019.09.014

Haghani, M., Sarvi, M., Shahhoseini, Z.: When 'push' does not come to 'shove': Revisiting 'faster is slower' in collective egress of human crowds. Transportation Research Part A: Policy and Practice 122, 51 (2019)

Haghani, M.: Empirical methods in pedestrian, crowd and evacuation dynamics: Part ii. field methods and controversial topics. Safety Science 129, 104760 (2020). doi:10.1016/j.ssci.2020.104760

Feliciani, C., Nishinari, K.: Measurement of congestion and intrinsic risk in pedestrian crowds. Transportation Research Part C: Emerging Technologies 91, 124–155 (2018). doi:10.1016/j.trc.2018.03.027

Fischer, M., Jankowiak, G., Wolfram, M.T.: Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media 15, 405 (2020). doi:10.3934/nhm.2020025

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000). doi:10.1038/35035023

Tajima, Y., Takimoto, K., Nagatani, T.: Scaling of pedestrian channel flow with a bottleneck. Physica A: Statistical Mechanics and its Applications 294(1-2), 257-268 (2001)

Nagatani, T.: Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck. Physica A: Statistical Mechanics and Its Applications 300(3-4), 558-566 (2001)

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507–525 (2001). doi:10.1016/s0378-4371(01)00141-8

Tang, M., Jia, H., Ran, B., Li, J.: Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model. Physica A: Statistical Mechanics and its Applications 453, 242–258 (2016). doi:10.1016/j.physa.2016.02.044

Parisi, D.R., Patterson, G.A.: Influence of bottleneck lengths and position on simulated pedestrian egress. Papers in Physics 9, 090001 (2017). doi:10.4279/pip.090001

Haghani, M., Sarvi, M.: Simulating pedestrian flow through narrow exits. Physics Letters A 383(2-3), 110–120 (2019). doi:10.1016/j.physleta.2018.10.029

Bandini, S., Crociani, L., Gorrini, A., Nishinari, K., Vizzari, G.: Unveiling the hidden dimension of pedestrian crowds: Introducing personal space and crowding into simulations. Fundamenta Informaticae 171(1-4), 19–38 (2019). doi:10.3233/fi-2020-1870

Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A: Statistical Mechanics and its Applications 324(3-4), 689–697 (2003). doi:10.1016/s0378-4371(03)00076-1

Huang, L., Wong, S., Zhang, M., Shu, C.W., Lam, W.H.: Revisiting hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological 43(1), 127–141 (2009). doi:10.1016/j.trb.2008.06.003

Graf, A.: Automated routing in pedestrian dynamics. Master Thesis (Fachhochschule Aachen, Campus Jülich) (2015)

Buchmüller, S., Weidmann, U.: Parameters of pedestrians, pedestrian traffic and walking facilities. IVT Schriftenreihe 132 (2006). doi:10.3929/ethz-b-000047950

Pedestrian data archive. Accessed: 2021-08-11

Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A: Statistical Mechanics and its Applications 389(9), 1902-1910 (2010)




How to Cite

Rzezonka, J., Seyfried, A., Hein, B., Chraibi, M., & Schadschneider, A. (2022). Numerical Study of Bottleneck Flow with Varying Corridor Width and Motivation Using a Speed-Based Model. Collective Dynamics, 6, 1–13.



Pedestrian and Evacuation Dynamics 2021