Benchmarking High-Fidelity Pedestrian Tracking Systems for Research, Real-Time Monitoring and Crowd Control
DOI:
https://doi.org/10.17815/CD.2021.134Keywords:
high-fidelity pedestrian tracking, sensor benchmarking, crowd monitoring, real-life pedestrian measurements, industrial and societal applicationsAbstract
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research allowing to quantify statistics of relevant observables including walking velocities, mutual distances and body orientations. As this technology advances, it is becoming increasingly useful also in society. In fact, continued urbanization is overwhelming existing pedestrian infrastructures such as transportation hubs and stations, generating an urgent need for real-time highly-accurate usage data, aiming both at flow monitoring and dynamics understanding. To successfully employ pedestrian tracking techniques in research and technology, it is crucial to validate and benchmark them for accuracy. This is not only necessary to guarantee data quality, but also to identify systematic errors. Currently, there is no established policy in this context. In this contribution, we present and discuss a benchmark suite, towards an open standard in the community, for privacy-respectful pedestrian tracking techniques. The suite is technology-independent and it is applicable to academic and commercial pedestrian tracking systems, operating both in lab environments and real-life conditions. The benchmark suite consists of 5 tests addressing specific aspects of pedestrian tracking quality, including accurate line-based crowd flux estimation, local density estimation, individual position detection and trajectory accuracy. The output of the tests are quality factors expressed as single numbers. We provide the benchmark results for two tracking systems, both operating in real-life, one commercial, and the other based on overhead depth-maps developed at TU Eindhoven, within the Crowdflow topical group. We discuss the results on the basis of the quality factors and report on the typical sensor and algorithmic performance. This enables us to highlight the current state-of-the-art, its limitations and provide installation recommendations, with specific attention to multi-sensor setups and data stitching.References
Eringa, P.: Prorail: Meer en snellere treinen. https://www.prorail.nl/nieuws/meer-en-snellere-treinen (2020). Accessed: 2021-07-28
Daamen, W., Hoogendoorn, S.P.: Experimental research of pedestrian walking behavior. Transportation Research Record 1828(1), 20-30 (2003). doi:10.3141/1828-03
Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment 2005(10), 10002 (2005). doi:10.1088/1742-5468/2005/10/P10002
Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. Journal of Statistical Mechanics: Theory and Experiment 2006(10), P10001 (2006). doi:10.1088/1742-5468/2006/10/P10001
Moussad, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society B: Biological Sciences 276, 2755-2762 (2009). doi:10.1098/RSPB.2009.0405
Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Extreme Environmental Events, pp. 517-550. Springer, New York, NY (2011). doi:10.1007/978-1-4419-7695-6_29
Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 86(4) (2012). doi:10.1103/PhysRevE.86.046108
Yamamoto, H., Yanagisawa, D., Feliciani, C., Nishinari, K.: Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow. Transportation Research Part B: Methodological 122, 486-510 (2019). doi:10.1016/j.trb.2019.03.008
Corbetta, A., Bruno, L., Muntean, A., Toschi, F.: High statistics measurements of pedestrian dynamics. Transportation Research Procedia 2, 96-104 (2014). doi:10.1016/J.TRPRO.2014.09.013
Brščić, D., Zanlungo, F., Kanda, T.: Density and velocity patterns during one year of pedestrian tracking. In: Transportation Research Procedia, vol. 2, pp. 77-86 (2014). doi:10.1016/j.trpro.2014.09.011
Zanlungo, F., Yücel, Z., Brščić, D., Kanda, T., Hagita, N.: Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features. PLoS ONE 12(11) (2017). doi:10.1371/journal.pone.0187253
Corbetta, A., Meeusen, J.A., Lee, C., Benzi, R., Toschi, F.: Physics-based modeling and data representation of pairwise interactions among pedestrians. Physical Review E 98(6) (2018). doi:10.1103/PhysRevE.98.062310
Willems, J., Corbetta, A., Menkovski, V., Toschi, F.: Pedestrian orientation dynamics from high-fidelity measurements. Scientific Reports 2020 10:1 10(1), 1-10 (2020). doi:10.1038/s41598-020-68287-6
Pouw, C.A.S., Toschi, F., van Schadewijk, F., Corbetta, A.: Monitoring physical distancing for crowd management: Real-time trajectory and group analysis. PLOS ONE 15 (2020). doi:10.1371/journal.pone.0240963
Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127-133 (2013). doi:10.1016/J.NEUCOM.2012.01.036
Brščić, D., Kanda, T., Ikeda, T., Miyashita, T.: Person tracking in large public spaces using 3-D range sensors. IEEE Transactions on Human-Machine Systems 43(6), 522-534 (2013). doi:10.1109/THMS.2013.2283945
Seer, S., Brändle, N., Ratti, C.: Kinects and human kinetics: A new approach for studying pedestrian behavior. Transportation Research Part C: Emerging Technologies 48, 212-228 (2014). doi:10.1016/j.trc.2014.08.012
Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J.P., Blat, J., Sinatra, R.: An analysis of visitors' behavior in the louvre museum: A study using bluetooth data. Environment and Planning B: Planning and Design 41(6), 1113-1131 (2014). doi:10.1068/b130047p
Centorrino, P., Corbetta, A., Cristiani, E., Onofri, E.: Managing crowded museums: Visitors flow measurement, analysis, modeling, and optimization. Journal of Computational Science 53, 101357 (2021). doi:10.1016/j.jocs.2021.101357
Hong, H., De Silva, G.D., Chan, M.C.: Crowdprobe: Non-invasive crowd monitoring with wifi probe. In: Proceedings of the ACM Interactactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, p. 23. Association for Computing Machinery, New York, NY, USA (2018). doi:10.1145/3264925
Georgievska, S., Rutten, P., Amoraal, J., Ranguelova, E., Bakhshi, R., de Vries, B.L., Lees, M., Klous, S.: Detecting high indoor crowd density with wi-fi localization: a statistical mechanics approach. Journal of Big Data 6 (2019). doi:10.1186/S40537-019-0194-3
van den Heuvel, J., Thurau, J., Mendelin, M., Schakenbos, R., van Ofwegen, M., Hoogendoorn, S.P.: An application of new pedestrian tracking sensors for evaluating platform safety risks at swiss and dutch train stations. In: Hamdar, S.H. (ed.) Traffic and Granular Flow '17, pp. 277-286. Springer International Publishing (2019). doi:10.1007/978-3-030-11440-4_42
Thurau, J., van den Heuvel, J., Keusen, N., van Ofwegen, M., Hoogendoorn, S.P.: Influence of Pedestrian Density on the Use of the Danger Zone at Platforms of Train Stations. In: Traffic and Granular Flow '17, pp. 287-296. Springer International Publishing (2019). doi:10.1007/978-3-030-11440-4_32
Thurau, J., Keusen, N.: Influence of obstacles on the use of the danger zone on railway platforms. Collective Dynamics 5(0), A84 (2020). doi:10.17815/cd.2020.84
Microsoft Coorporation, Kinect for Xbox 360, Redmond WA, USA
Kroneman, W., Corbetta, A., Toschi, F.: Accurate pedestrian localization in overhead depth images via height-augmented hog. Collective Dynamics 5 (2020). doi:10.17815/CD.2020.30
Corbetta, A., Kroneman, W., Donners, M., Haans, A., Ross, P., Trouwborst, M., Van de Wijdeven, S., Hultermans, M., Sekulovski, D., Van der Heijden, F., Mentink, S., Toschi, F.: A large-scale real-life crowd steering experiment via arrow-like stimuli. Collective Dynamics 5(0), 61-68 (2020). doi:10.17815/cd.2020.34
Allan, D.B., Caswell, T., Keim, N.C., van der Wel, C.M., Verweij, R.W.: soft-matter/trackpy: Trackpy v0.5.0 (2021). doi:10.5281/zenodo.4682814
Corbetta, A., Lee, C., Benzi, R., Muntean, A., Toschi, F.: Fluctuations around mean walking behaviors in diluted pedestrian flows. Physical Review E 95(3) (2017)
Liu, X., Song, W., Zhang, J.: Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A: Statistical Mechanics and its Applications 388(13), 2717-2726 (2009). doi:10.1016/j.physa.2009.03.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Caspar Pouw
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).