Microscopic Characteristics and Modelling of Pedestrian Inflow Process with Inactive Persons
DOI:
https://doi.org/10.17815/CD.2021.136Keywords:
inflow process, pedestrian dynamics, modelling, simulationAbstract
Inflow and outflow processes are common phenomena in daily life. Many types of research have been conducted to study the features of the outflow process, especially in scenarios with a single room or a straight corridor. A few scholars have paid attention to the movement characteristics of pedestrian inflow. Further explorations are still under great demand. In this contribution, a set of pre-conducted experiments are used to analyze the characteristics of the pedestrian inflow process with inactive persons. In these experiments, inactive persons were required to randomly cease within the room, leading to intensive detour behavior of pedestrians. The characteristics are carefully investigated using gradient analysis and curl analysis. To mimic the aforementioned inflow process, static global field is constructed to heuristically navigate a social force based microscopic model. The proposed model can reproduce the self-organized phenomena in the experiments. Our work can help understand the field feature of the pedestrian inflow process with inactive persons. High chaos level areas can be marked out providing practical information for managers.References
Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Science 1(1), 1-40 (2012). doi:10.1140/epjds7
Krausz, B., Bauckhage, C.: Loveparade 2010: Automatic video analysis of a crowd disaster. Computer Vision and Image Understanding 116(3), 307-319 (2012). doi:10.1016/j.cviu.2011.08.006
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000). doi:10.1038/35035023
Fu, L., Song, W., Lo, S.: A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room. Physics Letters A 380(34), 2619-2627 (2016). doi:10.1016/j.physleta.2016.06.011
Zhang, J., Song, W., Xu, X.: Experiment and multi-grid modeling of evacuation from a classroom. Physica A: Statistical Mechanics and its Applications 387(23), 5901-5909 (2008). doi:10.1016/j.physa.2008.06.030
Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation science 39(1), 1-24 (2005). doi:10.1287/trsc.1040.0108
Guanquan, C., Jinhua, S.: The effect of pre-movement time and occupant density on evacuation time. Journal of fire sciences 24(3), 237-259 (2006). doi:10.1177/0734904106058249
Kobes, M., Helsloot, I., de Vries, B., Post, J.: Exit choice,(pre-) movement time and (pre-) evacuation behaviour in hotel fire evacuation—behavioural analysis and validation of the use of serious gaming in experimental research. Procedia Engineering 3, 37-51 (2010). doi:10.1016/j.proeng.2010.07.006
Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment 2005(10), P10002 (2005). doi:10.1088/1742-5468/2005/10/P10002
Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. Journal of Statistical Mechanics: Theory and Experiment 2012(02), P02002 (2012). doi:10.1088/1742-5468/2012/02/P02002
Lian, L., Mai, X., Song, W., Richard, Y.K.K., Wei, X., Ma, J.: An experimental study on four-directional intersecting pedestrian flows. Journal of Statistical Mechanics: Theory and Experiment 2015(8), P08024 (2015). doi:10.1088/1742-5468/2015/08/P08024
Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012). doi:10.1016/j.physa.2011.07.056
Fu, Libi, Fang, Zhiming, Liu, Xiaodong, Song, Weiguo: Experimental study of pedestrian inflow in a room with a separate entrance and exit. Physica A Statistical Mechanics and Its Applications (2016). doi:10.1016/j.physa.2015.09.026
Ezaki, T., Ohtsuka, K., Yanagisawa, D., Nishinari, K.: Inflow process: A counterpart of evacuation. In: Traffic and Granular Flow'13, pp. 227-231. Springer (2015). doi:10.1007/978-3-319-10629-8_27
Ezaki, T., Ohtsuka, K., Chraibi, M., Boltes, M., Yanagisawa, D., Seyfried, A., Schadschneider, A., Nishinari, K.: Inflow process of pedestrians to a confined space. arXiv preprint arXiv:1609.07884 (2016). doi:10.17815/CD.2016.4
Liu, X., Song, W., Fu, L., Lv, W., Fang, Z.: Typical features of pedestrian spatial distribution in the inflow process. Physics Letters A 380(17), 1526-1534 (2016). doi:10.1016/j.physleta.2016.02.028
Zhang, Q., Han, B., Li, D.: Modeling and simulation of passenger alighting and boarding movement in beijing metro stations. Transportation Research Part C: Emerging Technologies 16(5), 635-649 (2008). doi:10.1016/j.trc.2007.12.001
Tian, X., Li, K., Kang, Z., Peng, Y., Cui, H.: Simulating the dynamical features of evacuation governed by periodic vibrations. Chaos Solitons & Fractals 139, 110099 (2020). doi:10.1016/j.chaos.2020.110099
Min, H.E., Luan, Q.X., Shui, W.B., Hai-Ning, Y.U., Fan, D.: An improved social force model considering pedestrian perception avoidance feature of peer groups. Journal of Highway and Transportation Research and Development (2017)
Wang, L., Zheng, J.H., Zhang, X.S., Zhang, J.L., Wang, Q.Z., Zhang, Q.: Pedestrians' behavior in emergency evacuation: Modeling and simulation. Chinese Physics B 25(11), 118901 (2016). doi:10.1088/1674-1056/25/11/118901
Fu, Z., Jia, Q., Chen, J., Ma, J., Han, K., Luo, L.: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy, and time-dependent characteristics. Transportation Research Part C Emerging Technologies 91(JUN.), 37-61 (2018). doi:10.1016/j.trc.2018.03.022
Wang, J., Zhang, L., Shi, Q., Yang, P., Hu, X.: Modeling and simulating for congestion pedestrian evacuation with panic. Physica A: Statistical Mechanics and its Applications 428, 396-409 (2015). doi:10.1016/j.physa.2015.01.057
Liang, Chen, Tie-Qiao, Tang, Hai-Jun, Huang, Jian-Jun, Wu, Ziqi, Song: Modeling pedestrian flow accounting for collision avoidance during evacuation. Simulation modelling practice and theory: International journal of the Federation of European Simulation Societies 82, 1-11 (2018). doi:10.1016/j.simpat.2017.12.011
Guo, X., Chen, J., Zheng, Y., Wei, J.: A mobile lattice gas model for simulating pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 391(3), 582-592 (2012). doi:10.1016/j.physa.2007.10.001
Wei, Y.F., Xue, Y., Dai, S.Q.: Small-Grid Analysis of Evacuation Processes with a Lattice Gas Model for Mixed Pedestrian Dynamics. Pedestrian and Evacuation Dynamics 2008 (2010). doi:10.1007/978-3-642-04504-2_60
Zhang, Yi-Ming, Huang, Hai-Jun, Shang, Hua-Yan: An extended mobile lattice gas model allowing pedestrian step size variable. Physica, A. Statistical mechanics and its applications (2015). doi:10.1016/j.physa.2015.01.006
Li, Q., Gao, Y., Chen, L., Kang, Z.: Emergency evacuation with incomplete information in the presence of obstacles. Physica A: Statistical Mechanics and its Applications 533 (2019). doi:10.1016/j.physa.2019.122068
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys.rev.e 51(5), 4282 (1995). doi:10.1103/PhysRevE.51.4282
Liu, Qian: The effect of dedicated exit on the evacuation of heterogeneous pedestrians. Physica A: Statistical Mechanics and its Applications 506, 305-323 (2018). doi:10.1016/j.physa.2018.04.032
Han, Y., Liu, H.: Modified social force model based on information transmission toward crowd evacuation simulation. Physica A Statistical Mechanics & Its Applications 469, 499-509 (2016). doi:10.1016/j.physa.2016.11.014
Echeverría-Huarte, I., Zuriguel, I., Hidalgo, R.C.: Pedestrian evacuation simulation in the presence of an obstacle using self-propelled spherocylinders. PHYSICAL REVIEW E 102(1) (2020). doi:10.1103/PhysRevE.102.012907
Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A: Statistical mechanics and its applications 389(9), 1902-1910 (2010). doi:10.1016/j.physa.2009.12.015
Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: An empirical study. Physical review E 75(4), 046109 (2007). doi:10.1103/PhysRevE.75.046109
Feliciani, C., Murakami, H., Nishinari, K.: A universal function for capacity of bidirectional pedestrian streams: Filling the gaps in the literature. PloS one 13(12), e0208496 (2018). doi:10.1371/journal.pone.0208496
Feliciani, C., Nishinari, K.: Measurement of congestion and intrinsic risk in pedestrian crowds. Transportation research part C: emerging technologies 91, 124-155 (2018). doi:10.1016/j.trc.2018.03.027
Fujita, A., Feliciani, C., Yanagisawa, D., Nishinari, K.: Traffic flow in a crowd of pedestrians walking at different speeds. Physical Review E 99(6), 062307 (2019). doi:10.1103/PhysRevE.99.062307
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Xinyu Fan, Long Xia, Weiguo Song
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).