Microscopic Characteristics and Modelling of Pedestrian Inflow Process with Inactive Persons


  • Xinyu Fan State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China
  • Long Xia State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China
  • Weiguo Song State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China




inflow process, pedestrian dynamics, modelling, simulation


Inflow and outflow processes are common phenomena in daily life. Many types of research have been conducted to study the features of the outflow process, especially in scenarios with a single room or a straight corridor. A few scholars have paid attention to the movement characteristics of pedestrian inflow. Further explorations are still under great demand. In this contribution, a set of pre-conducted experiments are used to analyze the characteristics of the pedestrian inflow process with inactive persons. In these experiments, inactive persons were required to randomly cease within the room, leading to intensive detour behavior of pedestrians. The characteristics are carefully investigated using gradient analysis and curl analysis. To mimic the aforementioned inflow process, static global field is constructed to heuristically navigate a social force based microscopic model. The proposed model can reproduce the self-organized phenomena in the experiments. Our work can help understand the field feature of the pedestrian inflow process with inactive persons. High chaos level areas can be marked out providing practical information for managers.


Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Science 1(1), 1-40 (2012). doi:10.1140/epjds7

Krausz, B., Bauckhage, C.: Loveparade 2010: Automatic video analysis of a crowd disaster. Computer Vision and Image Understanding 116(3), 307-319 (2012). doi:10.1016/j.cviu.2011.08.006

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000). doi:10.1038/35035023

Fu, L., Song, W., Lo, S.: A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room. Physics Letters A 380(34), 2619-2627 (2016). doi:10.1016/j.physleta.2016.06.011

Zhang, J., Song, W., Xu, X.: Experiment and multi-grid modeling of evacuation from a classroom. Physica A: Statistical Mechanics and its Applications 387(23), 5901-5909 (2008). doi:10.1016/j.physa.2008.06.030

Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation science 39(1), 1-24 (2005). doi:10.1287/trsc.1040.0108

Guanquan, C., Jinhua, S.: The effect of pre-movement time and occupant density on evacuation time. Journal of fire sciences 24(3), 237-259 (2006). doi:10.1177/0734904106058249

Kobes, M., Helsloot, I., de Vries, B., Post, J.: Exit choice,(pre-) movement time and (pre-) evacuation behaviour in hotel fire evacuation—behavioural analysis and validation of the use of serious gaming in experimental research. Procedia Engineering 3, 37-51 (2010). doi:10.1016/j.proeng.2010.07.006

Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment 2005(10), P10002 (2005). doi:10.1088/1742-5468/2005/10/P10002

Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. Journal of Statistical Mechanics: Theory and Experiment 2012(02), P02002 (2012). doi:10.1088/1742-5468/2012/02/P02002

Lian, L., Mai, X., Song, W., Richard, Y.K.K., Wei, X., Ma, J.: An experimental study on four-directional intersecting pedestrian flows. Journal of Statistical Mechanics: Theory and Experiment 2015(8), P08024 (2015). doi:10.1088/1742-5468/2015/08/P08024

Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012). doi:10.1016/j.physa.2011.07.056

Fu, Libi, Fang, Zhiming, Liu, Xiaodong, Song, Weiguo: Experimental study of pedestrian inflow in a room with a separate entrance and exit. Physica A Statistical Mechanics and Its Applications (2016). doi:10.1016/j.physa.2015.09.026

Ezaki, T., Ohtsuka, K., Yanagisawa, D., Nishinari, K.: Inflow process: A counterpart of evacuation. In: Traffic and Granular Flow'13, pp. 227-231. Springer (2015). doi:10.1007/978-3-319-10629-8_27

Ezaki, T., Ohtsuka, K., Chraibi, M., Boltes, M., Yanagisawa, D., Seyfried, A., Schadschneider, A., Nishinari, K.: Inflow process of pedestrians to a confined space. arXiv preprint arXiv:1609.07884 (2016). doi:10.17815/CD.2016.4

Liu, X., Song, W., Fu, L., Lv, W., Fang, Z.: Typical features of pedestrian spatial distribution in the inflow process. Physics Letters A 380(17), 1526-1534 (2016). doi:10.1016/j.physleta.2016.02.028

Zhang, Q., Han, B., Li, D.: Modeling and simulation of passenger alighting and boarding movement in beijing metro stations. Transportation Research Part C: Emerging Technologies 16(5), 635-649 (2008). doi:10.1016/j.trc.2007.12.001

Tian, X., Li, K., Kang, Z., Peng, Y., Cui, H.: Simulating the dynamical features of evacuation governed by periodic vibrations. Chaos Solitons & Fractals 139, 110099 (2020). doi:10.1016/j.chaos.2020.110099

Min, H.E., Luan, Q.X., Shui, W.B., Hai-Ning, Y.U., Fan, D.: An improved social force model considering pedestrian perception avoidance feature of peer groups. Journal of Highway and Transportation Research and Development (2017)

Wang, L., Zheng, J.H., Zhang, X.S., Zhang, J.L., Wang, Q.Z., Zhang, Q.: Pedestrians' behavior in emergency evacuation: Modeling and simulation. Chinese Physics B 25(11), 118901 (2016). doi:10.1088/1674-1056/25/11/118901

Fu, Z., Jia, Q., Chen, J., Ma, J., Han, K., Luo, L.: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy, and time-dependent characteristics. Transportation Research Part C Emerging Technologies 91(JUN.), 37-61 (2018). doi:10.1016/j.trc.2018.03.022

Wang, J., Zhang, L., Shi, Q., Yang, P., Hu, X.: Modeling and simulating for congestion pedestrian evacuation with panic. Physica A: Statistical Mechanics and its Applications 428, 396-409 (2015). doi:10.1016/j.physa.2015.01.057

Liang, Chen, Tie-Qiao, Tang, Hai-Jun, Huang, Jian-Jun, Wu, Ziqi, Song: Modeling pedestrian flow accounting for collision avoidance during evacuation. Simulation modelling practice and theory: International journal of the Federation of European Simulation Societies 82, 1-11 (2018). doi:10.1016/j.simpat.2017.12.011

Guo, X., Chen, J., Zheng, Y., Wei, J.: A mobile lattice gas model for simulating pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 391(3), 582-592 (2012). doi:10.1016/j.physa.2007.10.001

Wei, Y.F., Xue, Y., Dai, S.Q.: Small-Grid Analysis of Evacuation Processes with a Lattice Gas Model for Mixed Pedestrian Dynamics. Pedestrian and Evacuation Dynamics 2008 (2010). doi:10.1007/978-3-642-04504-2_60

Zhang, Yi-Ming, Huang, Hai-Jun, Shang, Hua-Yan: An extended mobile lattice gas model allowing pedestrian step size variable. Physica, A. Statistical mechanics and its applications (2015). doi:10.1016/j.physa.2015.01.006

Li, Q., Gao, Y., Chen, L., Kang, Z.: Emergency evacuation with incomplete information in the presence of obstacles. Physica A: Statistical Mechanics and its Applications 533 (2019). doi:10.1016/j.physa.2019.122068

Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys.rev.e 51(5), 4282 (1995). doi:10.1103/PhysRevE.51.4282

Liu, Qian: The effect of dedicated exit on the evacuation of heterogeneous pedestrians. Physica A: Statistical Mechanics and its Applications 506, 305-323 (2018). doi:10.1016/j.physa.2018.04.032

Han, Y., Liu, H.: Modified social force model based on information transmission toward crowd evacuation simulation. Physica A Statistical Mechanics & Its Applications 469, 499-509 (2016). doi:10.1016/j.physa.2016.11.014

Echeverría-Huarte, I., Zuriguel, I., Hidalgo, R.C.: Pedestrian evacuation simulation in the presence of an obstacle using self-propelled spherocylinders. PHYSICAL REVIEW E 102(1) (2020). doi:10.1103/PhysRevE.102.012907

Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A: Statistical mechanics and its applications 389(9), 1902-1910 (2010). doi:10.1016/j.physa.2009.12.015

Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: An empirical study. Physical review E 75(4), 046109 (2007). doi:10.1103/PhysRevE.75.046109

Feliciani, C., Murakami, H., Nishinari, K.: A universal function for capacity of bidirectional pedestrian streams: Filling the gaps in the literature. PloS one 13(12), e0208496 (2018). doi:10.1371/journal.pone.0208496

Feliciani, C., Nishinari, K.: Measurement of congestion and intrinsic risk in pedestrian crowds. Transportation research part C: emerging technologies 91, 124-155 (2018). doi:10.1016/j.trc.2018.03.027

Fujita, A., Feliciani, C., Yanagisawa, D., Nishinari, K.: Traffic flow in a crowd of pedestrians walking at different speeds. Physical Review E 99(6), 062307 (2019). doi:10.1103/PhysRevE.99.062307




How to Cite

Fan, X., Xia, L., & Song, W. (2022). Microscopic Characteristics and Modelling of Pedestrian Inflow Process with Inactive Persons. Collective Dynamics, 6, 1–20. https://doi.org/10.17815/CD.2021.136



Pedestrian and Evacuation Dynamics 2021