A Coupled SFM-ASCRIBE Model To Investigate the Influence of Emotions and Collective Behavior in Homogeneous and Heterogeneous Crowds
DOI:
https://doi.org/10.17815/CD.2024.147Keywords:
Crowd dynamics, Emotional contagion, Panic propagation, Emergency evacuation, Decision makingAbstract
The understanding of crowd behavior dynamics holds immense significance in ensuring public safety across a range of situations, including emergency evacuations and large-scale events. Our research focuses on two primary objectives: investigating the impact of emotions on crowd movement and gaining valuable insights into collective behavior within crowds. To achieve this, we present a coupled model, incorporating an enhanced ASCRIBE model with an agent displacement model. We introduce heterogeneity into our model by incorporating specific mobility laws for different categories of panicked crowds, considering the influence of emotions on both speed and direction. Through numerical simulations, we analyze the model's parameters, observe the behavior of uniform crowds, and explore the collective dynamics within diverse crowds. By conducting comprehensive simulations and analyses, the findings from this study can contribute to the development of more effective crowd management strategies and emergency evacuation protocols.
References
Üsten, E., Lügering, H., Sieben, A.: Pushing and non-pushing forward motion in crowds: A systematic psychological observation method for rating individual behavior in pedestrian dynamics. Collective dynamics 7, 1-16 (2022). doi:10.17815/CD.2022.138
Liddle, J., Seyfried, A., Steffen, B., Klingsch, W., Rupprecht, T., Winkens, A., Boltes, M.: Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations. Collective dynamics 7, 1-23 (2022). doi:10.17815/CD.2022.139
Gayathri, H., Gulhare, S., Verma, A.: Characteristics of stop and go wave in one dimensional interrupted pedestrian flow through narrow channel. Collective dynamics 3, 1-14 (2018). doi:10.17815/CD.2018.18
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Ann Solid Struct Mech 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282
Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: statistical mechanics and its applications 312(1-2), 260-276 (2002). doi:10.1016/S0378-4371(02)00857-9
Muramatsu, M., Irie, T., Nagatani, T.: Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and its Applications 267(3-4), 487-498 (1999). doi:10.1016/S0378-4371(99)00018-7
Ma, L., Chen, B., Wang, X., Zhu, Z., Wang, R., Qiu, X.: The analysis on the desired speed in social force model using a data driven approach. Physica A: Statistical Mechanics and its Applications 525, 894-911 (2019). doi:10.1016/j.physa.2019.03.087
Frémond, M.: Rigid bodies collisions. Physics Letters A 204(1), 33-41 (1995). doi:10.1016/0375-9601(95)00418-3
Jebrane, A., Argoul, P., Hakim, A., Rhabi, M.E.: Estimating contact forces and pressure in a dense crowd: Microscopic and macroscopic models. Applied Mathematical Modelling 74, 409-421 (2019). doi:10.1016/j.apm.2019.04.062
Pécol, P., Pont, S.D., Erlicher, S., Argoul, P.: Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations. Annals of Solid and Structural Mechanics 2, 62-85 (2011). doi:10.1007/s12356-011-0019-3
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000). doi:10.1038/35035023
Fu, L., Song, W., Lv, W., Liu, X., Lo, S.: Multi-grid simulation of counter flow pedestrian dynamics with emotion propagation. Simulation Modelling Practice and Theory 60, 1-14 (2016). doi:10.1016/j.simpat.2015.09.007
Cao, M., Zhang, G., Wang, M., Lu, D., Liu, H.: A method of emotion contagion for crowd evacuation. Physica A: Statistical Mechanics and its Applications 483, 250-258 (2017). doi:10.1016/j.physa.2017.04.137
Cornes, F., Frank, G., Dorso, C.O.: Fear propagation and the evacuation dynamics. Simulation Modelling Practice and Theory 95, 112-133 (2019). doi:10.1016/j.simpat.2019.04.012
Xu, M., Li, C., Lv, P., Chen, W., Deng, Z., Zhou, B., Manocha, D.: Emotion-based crowd simulation model based on physical strength consumption for emergency scenarios. IEEE Transactions on Intelligent Transportation Systems (2020). doi:10.1109/TITS.2020.3000607
Zheng, Z., Zhu, G., Sun, Z., Wang, Z., Li, L.: Improved social force model based on emotional contagion and evacuation assistant. IEEE Access 8, 195989-196001 (2020). doi:10.1109/ACCESS.2020.3034348
Zhou, R., Ou, Y., Tang, W., Wang, Q., Yu, B.: An emergency evacuation behavior simulation method combines personality traits and emotion contagion. Ieee Access 8, 66693-66706 (2020). doi:10.1109/ACCESS.2020.2985987
Mao, Y., Fan, Z., Zhao, J., Zhang, Q., He, W.: An emotional contagion based simulation for emergency evacuation peer behavior decision. Simulation Modelling Practice and Theory 96, 101936 (2019). doi:10.1016/j.simpat.2019.101936
Liu, T.T., Liu, Z., Ma, M., Xuan, R., Chen, T., Lu, T., Yu, L.: An information perception-based emotion contagion model for fire evacuation. 3D Research 8, 1-16 (2017). doi:10.1007/s13319-017-0120-4
Cao, R.F., Lee, E.W.M., Yuen, A.C.Y., Chan, Q.N., Xie, W., Shi, M., Yeoh, G.H.: Development of an evacuation model considering the impact of stress variation on evacuees under fire emergency. Safety science 138, 105232 (2021). doi:10.1016/j.ssci.2021.105232
Xu, T., Shi, D., Chen, J., Li, T., Lin, P., Ma, J.: Dynamics of emotional contagion in dense pedestrian crowds. Physics Letters A 384(3), 126080 (2020). doi:10.1016/j.physleta.2019.126080
Mao, Y., Fan, X., Fan, Z., He, W.: Modeling group structures with emotion in crowd evacuation. IEEE Access 7, 140010-140021 (2019). doi:10.1109/ACCESS.2019.2943603
Mao, Y., Yang, S., Li, Z., Li, Y.: Personality trait and group emotion contagion based crowd simulation for emergency evacuation. Multimedia Tools and Applications 79, 3077-3104 (2020). doi:10.1007/s11042-018-6069-3
Xiao, Q., Li, J.: Pedestrian evacuation model considering dynamic emotional update in direction perception domain. Complexity 2021, 1-16 (2021). doi:10.1155/2021/5530144
Li, F., Chen, S., Wang, X., Feng, F.: Pedestrian evacuation modeling and simulation on metro platforms considering panic impacts. Procedia-social and behavioral sciences 138, 314-322 (2014). doi:10.1016/j.sbspro.2014.07.209
Niu, Y., Chen, Y., Kong, D., Yuan, B., Zhang, J., Xiao, J.: Strategy evolution of panic pedestrians in emergent evacuation with assailants based on susceptible-infected-susceptible model. Information Sciences 570, 105-123 (2021). doi:10.1016/j.ins.2021.04.040
Guo, X., Chen, J., Zheng, Y., Wei, J.: A heterogeneous lattice gas model for simulating pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 391(3), 582-592 (2012). doi:10.1016/j.physa.2011.07.055
Hrabák, P., Bukáček, M.: Influence of agents heterogeneity in cellular model of evacuation. Journal of computational science 21, 486-493 (2017). doi:10.1016/j.jocs.2016.08.002
Li, Y., Chen, M., Zheng, X., Dou, Z., Cheng, Y.: Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model. Applied Mathematics and Computation 371, 124941 (2020). doi:10.1016/j.amc.2019.124941
Wu, W., Chen, M., Li, J., Liu, B., Zheng, X.: An extended social force model via pedestrian heterogeneity affecting the self-driven force. IEEE Transactions on Intelligent Transportation Systems 23(7), 7974-7986 (2022). doi:10.1109/TITS.2021.3074914
Wu, W., Li, J., Yi, W., Zheng, X.: Modeling crowd evacuation via behavioral heterogeneity-based social force model. IEEE Transactions on Intelligent Transportation Systems 23(9), 15476-15486 (2022). doi:10.1109/TITS.2022.3140823
Kabalan, B., Argoul, P., Jebrane, A., Cumunel, G., Erlicher, S.: A crowd movement model for pedestrian flow through bottlenecks. Ann Solid Struct Mech 8, 1-15 (2016). doi:10.1007/s12356-016-0044-3
Jebrane, A., Argoul, P., Hakim, A., Rhabi, M.E.: Estimating contact forces and pressure in a dense crowd: Microscopic and macroscopic models. Applied Mathematical Modelling 74, 409-421 (2019). doi:10.1016/j.apm.2019.04.062
Cao, M., Zhang, G., Wang, M., Lu, D., Liu, H.: A method of emotion contagion for crowd evacuation. Physica A: Statistical Mechanics and its Applications 483, 250-258 (2017). doi:10.1016/j.physa.2017.04.137
Crocq, L.: Secours psychologiques aux victimes d’attentats terroristes: Partie 1: Tableaux cliniques relatifs aux attentats de 1986 et 1995 (2016). doi:10.1051/ppsy/2016554253
Pecol, P.: Modélisation 2d discrète du mouvement des piétons: application à l'évacuation des structures du génie civil et à l'interaction foule-passerelle. Ph.D. thesis, Université Paris-Est (2011)
Xiao, Y., Gao, Z., Qu, Y., Li, X.: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach. Transportation research part C: emerging technologies 68, 566-580 (2016). doi:10.1016/j.trc.2016.05.012
Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnar-farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-352 (2005). doi:10.1177/0037549705052772
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yassine Lamrhary, Aissam Jebrane, Pierre Argoul, Adnane Boukamel, Abdellah Hamdaoui
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).