A Coupled SFM-ASCRIBE Model To Investigate the Influence of Emotions and Collective Behavior in Homogeneous and Heterogeneous Crowds

Authors

  • Yassine Lamrhary Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
  • Aissam Jebrane Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
  • Pierre Argoul Université Gustave Eiffel, MAST-EMGCU, Marne-la-Vallée, France
  • Adnane Boukamel Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
  • Abdellah Hamdaoui Laboratoire d’Ingénierie Et Matériaux LIMAT, Faculté Des Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco

DOI:

https://doi.org/10.17815/CD.2024.147

Keywords:

Crowd dynamics, Emotional contagion, Panic propagation, Emergency evacuation, Decision making

Abstract

The understanding of crowd behavior dynamics holds immense significance in ensuring public safety across a range of situations, including emergency evacuations and large-scale events. Our research focuses on two primary objectives: investigating the impact of emotions on crowd movement and gaining valuable insights into collective behavior within crowds. To achieve this, we present a coupled model, incorporating an enhanced ASCRIBE model with an agent displacement model. We introduce heterogeneity into our model by incorporating specific mobility laws for different categories of panicked crowds, considering the influence of emotions on both speed and direction. Through numerical simulations, we analyze the model's parameters, observe the behavior of uniform crowds, and explore the collective dynamics within diverse crowds. By conducting comprehensive simulations and analyses, the findings from this study can contribute to the development of more effective crowd management strategies and emergency evacuation protocols.

References

Üsten, E., Lügering, H., Sieben, A.: Pushing and non-pushing forward motion in crowds: A systematic psychological observation method for rating individual behavior in pedestrian dynamics. Collective dynamics 7, 1-16 (2022). doi:10.17815/CD.2022.138

Liddle, J., Seyfried, A., Steffen, B., Klingsch, W., Rupprecht, T., Winkens, A., Boltes, M.: Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations. Collective dynamics 7, 1-23 (2022). doi:10.17815/CD.2022.139

Gayathri, H., Gulhare, S., Verma, A.: Characteristics of stop and go wave in one dimensional interrupted pedestrian flow through narrow channel. Collective dynamics 3, 1-14 (2018). doi:10.17815/CD.2018.18

Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Ann Solid Struct Mech 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: statistical mechanics and its applications 312(1-2), 260-276 (2002). doi:10.1016/S0378-4371(02)00857-9

Muramatsu, M., Irie, T., Nagatani, T.: Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and its Applications 267(3-4), 487-498 (1999). doi:10.1016/S0378-4371(99)00018-7

Ma, L., Chen, B., Wang, X., Zhu, Z., Wang, R., Qiu, X.: The analysis on the desired speed in social force model using a data driven approach. Physica A: Statistical Mechanics and its Applications 525, 894-911 (2019). doi:10.1016/j.physa.2019.03.087

Frémond, M.: Rigid bodies collisions. Physics Letters A 204(1), 33-41 (1995). doi:10.1016/0375-9601(95)00418-3

Jebrane, A., Argoul, P., Hakim, A., Rhabi, M.E.: Estimating contact forces and pressure in a dense crowd: Microscopic and macroscopic models. Applied Mathematical Modelling 74, 409-421 (2019). doi:10.1016/j.apm.2019.04.062

Pécol, P., Pont, S.D., Erlicher, S., Argoul, P.: Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations. Annals of Solid and Structural Mechanics 2, 62-85 (2011). doi:10.1007/s12356-011-0019-3

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000). doi:10.1038/35035023

Fu, L., Song, W., Lv, W., Liu, X., Lo, S.: Multi-grid simulation of counter flow pedestrian dynamics with emotion propagation. Simulation Modelling Practice and Theory 60, 1-14 (2016). doi:10.1016/j.simpat.2015.09.007

Cao, M., Zhang, G., Wang, M., Lu, D., Liu, H.: A method of emotion contagion for crowd evacuation. Physica A: Statistical Mechanics and its Applications 483, 250-258 (2017). doi:10.1016/j.physa.2017.04.137

Cornes, F., Frank, G., Dorso, C.O.: Fear propagation and the evacuation dynamics. Simulation Modelling Practice and Theory 95, 112-133 (2019). doi:10.1016/j.simpat.2019.04.012

Xu, M., Li, C., Lv, P., Chen, W., Deng, Z., Zhou, B., Manocha, D.: Emotion-based crowd simulation model based on physical strength consumption for emergency scenarios. IEEE Transactions on Intelligent Transportation Systems (2020). doi:10.1109/TITS.2020.3000607

Zheng, Z., Zhu, G., Sun, Z., Wang, Z., Li, L.: Improved social force model based on emotional contagion and evacuation assistant. IEEE Access 8, 195989-196001 (2020). doi:10.1109/ACCESS.2020.3034348

Zhou, R., Ou, Y., Tang, W., Wang, Q., Yu, B.: An emergency evacuation behavior simulation method combines personality traits and emotion contagion. Ieee Access 8, 66693-66706 (2020). doi:10.1109/ACCESS.2020.2985987

Mao, Y., Fan, Z., Zhao, J., Zhang, Q., He, W.: An emotional contagion based simulation for emergency evacuation peer behavior decision. Simulation Modelling Practice and Theory 96, 101936 (2019). doi:10.1016/j.simpat.2019.101936

Liu, T.T., Liu, Z., Ma, M., Xuan, R., Chen, T., Lu, T., Yu, L.: An information perception-based emotion contagion model for fire evacuation. 3D Research 8, 1-16 (2017). doi:10.1007/s13319-017-0120-4

Cao, R.F., Lee, E.W.M., Yuen, A.C.Y., Chan, Q.N., Xie, W., Shi, M., Yeoh, G.H.: Development of an evacuation model considering the impact of stress variation on evacuees under fire emergency. Safety science 138, 105232 (2021). doi:10.1016/j.ssci.2021.105232

Xu, T., Shi, D., Chen, J., Li, T., Lin, P., Ma, J.: Dynamics of emotional contagion in dense pedestrian crowds. Physics Letters A 384(3), 126080 (2020). doi:10.1016/j.physleta.2019.126080

Mao, Y., Fan, X., Fan, Z., He, W.: Modeling group structures with emotion in crowd evacuation. IEEE Access 7, 140010-140021 (2019). doi:10.1109/ACCESS.2019.2943603

Mao, Y., Yang, S., Li, Z., Li, Y.: Personality trait and group emotion contagion based crowd simulation for emergency evacuation. Multimedia Tools and Applications 79, 3077-3104 (2020). doi:10.1007/s11042-018-6069-3

Xiao, Q., Li, J.: Pedestrian evacuation model considering dynamic emotional update in direction perception domain. Complexity 2021, 1-16 (2021). doi:10.1155/2021/5530144

Li, F., Chen, S., Wang, X., Feng, F.: Pedestrian evacuation modeling and simulation on metro platforms considering panic impacts. Procedia-social and behavioral sciences 138, 314-322 (2014). doi:10.1016/j.sbspro.2014.07.209

Niu, Y., Chen, Y., Kong, D., Yuan, B., Zhang, J., Xiao, J.: Strategy evolution of panic pedestrians in emergent evacuation with assailants based on susceptible-infected-susceptible model. Information Sciences 570, 105-123 (2021). doi:10.1016/j.ins.2021.04.040

Guo, X., Chen, J., Zheng, Y., Wei, J.: A heterogeneous lattice gas model for simulating pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 391(3), 582-592 (2012). doi:10.1016/j.physa.2011.07.055

Hrabák, P., Bukáček, M.: Influence of agents heterogeneity in cellular model of evacuation. Journal of computational science 21, 486-493 (2017). doi:10.1016/j.jocs.2016.08.002

Li, Y., Chen, M., Zheng, X., Dou, Z., Cheng, Y.: Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model. Applied Mathematics and Computation 371, 124941 (2020). doi:10.1016/j.amc.2019.124941

Wu, W., Chen, M., Li, J., Liu, B., Zheng, X.: An extended social force model via pedestrian heterogeneity affecting the self-driven force. IEEE Transactions on Intelligent Transportation Systems 23(7), 7974-7986 (2022). doi:10.1109/TITS.2021.3074914

Wu, W., Li, J., Yi, W., Zheng, X.: Modeling crowd evacuation via behavioral heterogeneity-based social force model. IEEE Transactions on Intelligent Transportation Systems 23(9), 15476-15486 (2022). doi:10.1109/TITS.2022.3140823

Kabalan, B., Argoul, P., Jebrane, A., Cumunel, G., Erlicher, S.: A crowd movement model for pedestrian flow through bottlenecks. Ann Solid Struct Mech 8, 1-15 (2016). doi:10.1007/s12356-016-0044-3

Jebrane, A., Argoul, P., Hakim, A., Rhabi, M.E.: Estimating contact forces and pressure in a dense crowd: Microscopic and macroscopic models. Applied Mathematical Modelling 74, 409-421 (2019). doi:10.1016/j.apm.2019.04.062

Cao, M., Zhang, G., Wang, M., Lu, D., Liu, H.: A method of emotion contagion for crowd evacuation. Physica A: Statistical Mechanics and its Applications 483, 250-258 (2017). doi:10.1016/j.physa.2017.04.137

Crocq, L.: Secours psychologiques aux victimes d’attentats terroristes: Partie 1: Tableaux cliniques relatifs aux attentats de 1986 et 1995 (2016). doi:10.1051/ppsy/2016554253

Pecol, P.: Modélisation 2d discrète du mouvement des piétons: application à l'évacuation des structures du génie civil et à l'interaction foule-passerelle. Ph.D. thesis, Université Paris-Est (2011)

Xiao, Y., Gao, Z., Qu, Y., Li, X.: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach. Transportation research part C: emerging technologies 68, 566-580 (2016). doi:10.1016/j.trc.2016.05.012

Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnar-farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-352 (2005). doi:10.1177/0037549705052772

Cover Image

Downloads

Published

09.02.2024

How to Cite

Lamrhary, Y., Jebrane, A., Argoul, P., Boukamel, A., & Hamdaoui, A. (2024). A Coupled SFM-ASCRIBE Model To Investigate the Influence of Emotions and Collective Behavior in Homogeneous and Heterogeneous Crowds. Collective Dynamics, 9, 1–29. https://doi.org/10.17815/CD.2024.147

Issue

Section

Articles