Propagation of Controlled Frontward Impulses Through Standing Crowds
DOI:
https://doi.org/10.17815/CD.2024.148Keywords:
External impulse, Propagation, Pedestrian, Experiment, Motion capturingAbstract
Impulse propagation in crowds is a phenomenon that is crucial for understanding collective dynamics, but has been scarcely addressed so far. Therefore, we have carried out experiments in which persons standing in a crowd are pushed forward in a controlled manner.
Variations of experimental parameters include (i) the intensity of the push, (ii) the initial inter-person distance, (iii) the preparedness of participants and (iv) the crowd formation. Our analysis links the intensity of an impulse recorded by a pressure sensor with individual movements of participants based on head trajectories recorded by overhead cameras and 3D motion capturing data.
The propagation distance as well as the propagation speed of the external impact depends mainly on the intensity of the impulse, whereas no significant effect regarding the preparedness of participants could be found. Especially the propagation speed is influenced by the initial inter-person distance. From the comparison between two methods that detect the time of motion due to the impulse, a more sensitive result is obtained when the velocity of three landmarks of the human body is taken into account and not only the forward displacement of the center of mass. Furthermore, the more intertwined participants are in relation to each other, the more the impulse is distributed to the sides. As a result, more people are affected, however with smaller individual displacements.
References
Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A.: Modelling of Pedestrian and Evacuation Dynamics. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 1-22. Springer Berlin Heidelberg, Berlin, Heidelberg (2018). doi:10.1007/978-3-642-27737-5_705-1
Korbmacher, R., Tordeux, A.: Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches. IEEE Transactions on Intelligent Transportation Systems 23(12), 24126-24144 (2022). doi:10.1109/TITS.2022.3205676
Boltes, M., Zhang, J., Tordeux, A., Schadschneider, A., Seyfried, A.: Empirical Results of Pedestrian and Evacuation Dynamics. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 1-29. Springer Berlin Heidelberg, Berlin, Heidelberg (2018). doi:10.1007/978-3-642-27737-5_706-1
van Toll, W., Braga, C., Solenthaler, B., Pettré, J.: Extreme-Density Crowd Simulation: Combining Agents with Smoothed Particle Hydrodynamics. In: Motion, Interaction and Games, pp. 1-10. ACM, Virtual Event SC USA (2020). doi:10.1145/3424636.3426896
Song, J., Chen, F., Zhu, Y., Zhang, N., Liu, W., Du, K.: Experiment Calibrated Simulation Modeling of Crowding Forces in High Density Crowd. IEEE Access 7, 100162-100173 (2019). doi:10.1109/ACCESS.2019.2930104
Li, C., Zhao, R., Wang, Y., Jia, P., Zhu, W., Ma, Y., Li, M.: Disturbance Propagation Model of Pedestrian Fall Behavior in a Pedestrian Crowd and Elimination Mechanism Analysis. IEEE Transactions on Intelligent Transportation Systems pp. 1-11 (2023). doi:10.1109/TITS.2023.3314072
Kim, S., Guy, S.J., Hillesland, K., Zafar, B., Gutub, A.A.A., Manocha, D.: Velocity-based modeling of physical interactions in dense crowds. The Visual Computer 31(5), 541-555 (2015). doi:10.1007/s00371-014-0946-1
van Toll, W., Chatagnon, T., Braga, C., Solenthaler, B., Pettré, J.: SPH crowds: Agent-based crowd simulation up to extreme densities using fluid dynamics. Computers & Graphics 98, 306-321 (2021). doi:10.1016/j.cag.2021.06.005
Wang, C., Shen, L., Weng, W.: Modelling physical contacts to evaluate the individual risk in a dense crowd. Scientific Reports 13(1), 3929 (2023). doi:10.1038/s41598-023-31148-z
Wang, C., Ni, S., Weng, W.: Modeling human domino process based on interactions among individuals for understanding crowd disasters. Physica A: Statistical Mechanics and its Applications 531, 121781 (2019). doi:10.1016/j.physa.2019.121781
Wang, C., Weng, W.: Study on the collision dynamics and the transmission pattern between pedestrians along the queue. Journal of Statistical Mechanics: Theory and Experiment 2018(7), 073406 (2018). doi:10.1088/1742-5468/aace27
Li, X., Song, W., Xu, X., Zhang, J., Xia, L., Shi, C.: Experimental study on pedestrian contact force under different degrees of crowding. Safety Science 127, 104713 (2020). doi:10.1016/j.ssci.2020.104713
Feldmann, S., Adrian, J.: Forward propagation of a push through a row of people. Safety Science 164, 106173 (2023). doi:10.1016/j.ssci.2023.106173
CrowdDNA Project: Website CrowdDNA Project. URL https://crowddna.eu/
CrowdDNA Project: D1.2: Laboratory dataset on large groups. URL http://crowddna.eu/d1-2-laboratory-dataset-on-large-groups/
Feldmann, S., Adrian, J., Boltes, M., Čamernik, J., Chatagnon, T., Comino-Trinidad, M., Kandler, A., Seyfried, A.: Impulse propagation through a small standing crowd. Pedestrian Dynamics Data Archive, Institute for Advanced Simulation 7: Civil Safety Research, Forschungszentrum Jülich (2024). doi:10.34735/ped.2022.6
Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127-133 (2013). doi:10.1016/j.neucom.2012.01.036. Special issue: Behaviours in video
Boltes, M., Boomers, A.K., Adrian, J., Brualla, R.M., Graf, A., Häger, P., Hillebrand, D., Kilic, D., Lieberenz, P., Salden, D., Schrödter, T.: Petrack (2021). doi:10.5281/zenodo.5126562
Schepers, M., Giuberti, M., Bellusci, G.: Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing (2018). doi:10.13140/RG.2.2.22099.07205
Boltes, M., Adrian, J., Raytarowski, A.K.: A Hybrid Tracking System of Full-Body Motion Inside Crowds. Sensors 21(6), 2108 (2021). doi:10.3390/s21062108
Xsensor LX210:50.50.05: Datasheet: Xsensor SENSORS LX210:50.50.05 (2019). URL https://www.xsensor.de/wp-content/uploads/2015/11/LX210_50_50_05-2500-Sensoren-508mm-Aufl%C3%B6sung-Gr%C3%B6sse-25x25cm-Messbereich-014-11Ncm2-Anwendung-Sitze_Rollst%C3%BChle.pdf
Feldmann, S., Chatagnon, T., Adrian, J., Pettré, J., Seyfried, A.: Temporal segmentation of motion propagation in response to an external impulse (2024). doi:10.48550/ARXIV.2402.19024
Michaud, B., Begon, M.: ezc3d: An easy C3D file I/O cross-platform solution for C++, Python and MATLAB. Journal of Open Source Software 6(58), 2911 (2021). doi:10.21105/joss.02911
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sina Feldmann, Juliane Adrian, Maik Boltes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).