Heterogeneity of Agents in Cellular Evacuation Model Explains the Decreasing Bottleneck Flow

Authors

DOI:

https://doi.org/10.17815/CD.2024.162

Keywords:

Pedestrian flow, Floor-field model, Agents' heterogeneity, Bonds, Aggressiveness

Abstract

Heterogeneous crowd consisting of pedestrians with essentially diverse abilities behaves in certain aspects differently than a homogeneous crowd consisting of "average" pedestrians. This study investigates the influence of heterogeneity in aspects connected to the ability to navigate through a crowd in front of a bottleneck. Simulations of cellular multi-agent model suggest that the heterogeneity in ability to push through the crowd (represented by aggressiveness) and willingness to bypass the crowd (represented by sensitivity to occupation) may be responsible for the bottleneck flow decreasing in time – a phenomenon observed in experiments.

Author Biographies

Pavel Hrabák, Czech Technical University in Prague, Faculty of Information Technology, Prague, Czechia

Associate professor and head of the Department of Applied Mathematics

Matej Šutý, Czech Technical University in Prague, Faculty of Information Technology, Prague, Czechia

Absolvent of Master programme at Department of Applied Mathematics 

Mykola Hotlib, Czech Technical University in Prague, Faculty of Information Technology, Prague, Czechia

Absolvent of Master programme at Department of Applied Mathematics 

References

Liao, W., Tordeux, A., Seyfried, A., Chraibi, M., Zheng, X., Zhao, Y.: Detection of steady state in pedestrian experiments. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow '15, pp. 73-79. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-33482-0_10

Hrabák, P., Bukáček, M., Kielar, P., Borrmann, A.: Pedestrian flow through complex infrastructure, experiments, and mass-transport processes. In: Hamdar, S. (ed.) Traffic and Granular Flow '17, pp. 159-166. Springer, Cham (2019). doi:10.1007/978-3-030-11440-4_19

Bukáček, M., Hrabák, P., Krbálek, M.: Microscopic travel-time analysis of bottleneck experiments. Transportmetrica A: Transport Science 14(5-6), 375-391 (2018). doi:10.1080/23249935.2017.1419423

Hrabák, P., Bukáček, M.: Influence of agents heterogeneity in cellular model of evacuation. Journal of Computational Science 21, 486-493 (2017). doi:10.1016/j.jocs.2016.08.002

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3 - 4), 507 - 525 (2001). doi:10.1016/S0378-4371(01)00141-8

Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B. V., Amsterdam (2010). doi:10.1016/C2009-0-16900-3

Li, Y., Chen, M., Dou, Z., Zheng, X., Cheng, Y., Mebarki, A.: A review of cellular automata models for crowd evacuation. Physica A: Statistical Mechanics and its Applications 526, 120752 (2019). doi:10.1016/j.physa.2019.03.117

Li, Y., Chen, M., Zheng, X., Dou, Z., Cheng, Y.: Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model. Applied Mathematics and Computation 371, 124941 (2020). doi:10.1016/j.amc.2019.124941

Yanagisawa, D., Yamazaki, K.: Detecting aggressive agents in egress process by using conflict data in cellular automaton model. Journal of Intelligent Transportation Systems 25(6), 626-643 (2021). doi:10.1080/15472450.2021.1942869

Šutý, M.: Conflict solution in cellular evacuation model. Bachelor's thesis, Czech Technical University in Prague, Prague, Czechia (2021). Available at https://dspace.cvut.cz/handle/10467/95146

Hotlib, M.: Exit definition influencing simulation of evacuation in agent-based models. Master's thesis, Czech Technical University in Prague, Prague, Czechia (2023). Available at https://dspace.cvut.cz/handle/10467/107382

Bukáček, M., Hrabák, P., Krbálek, M.: Cellular model of pedestrian dynamics with adaptive time span. In: Wyrzykowski, e.a. (ed.) Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 8385, pp. 669-678. Springer (2014). doi:10.1007/978-3-642-55195-6_63

Hrabák, P., Gašpar, F.: Spatially dependent friction-a way of adjusting bottleneck flow in cellular models. In: Zuriguel, I., Garcimartin, A., Cruz, R. (eds.) Traffic and Granular Flow 2019, Springer Proceedings in Physics, vol. 252, pp. 103-109. Springer, Cham (2020). doi:10.1007/978-3-030-55973-1_13

Yanagisawa, D., Ezaki, T., Tomoeda, A., Nishinari, K.: Influence of velocity variance of a single particle on cellular automaton models. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow '13, pp. 495-503. Springer International Publishing, Cham (2015). doi:10.1007/978-3-319-10629-8_55

Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67, 056122 (2003). doi:10.1103/PhysRevE.67.056122

Muggeo, V.M.R.: Estimating regression models with unknown break-points. Statistics in Medicine 22(19), 3055-3071 (2003). doi:10.1002/sim.1545

Pilgrim, C.: piecewise-regression (aka segmented regression) in python. Journal of Open Source Software 6(68), 3859 (2021). doi:10.21105/joss.03859

Cover Image

Downloads

Published

17.05.2024

How to Cite

Hrabák, P., Šutý, M., & Hotlib, M. (2024). Heterogeneity of Agents in Cellular Evacuation Model Explains the Decreasing Bottleneck Flow. Collective Dynamics, 9, 1–8. https://doi.org/10.17815/CD.2024.162

Issue

Section

Special Issue of Pedestrian and Evacuation Dynamics 2023