The Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships

Authors

DOI:

https://doi.org/10.17815/CD.2024.177

Keywords:

Data fitting, Speed/Flow Density Relationship, Pedestrian Dynamics, Traffic Dynamics

Abstract

This paper presents guidance on data-fitting approaches in the context of pedestrian and evacuation dynamics research. In particular, it examines parametric and non-parametric regression techniques for analysing speed/flow density relationships. Parametric models assume predefined functional forms, while non-parametric models provide flexibility to capture complex relationships. This paper evaluates a range of traditional statistical approaches and machine-learning techniques. It emphasises the importance of weighting unbalanced datasets to enhance model accuracy. Practical applications are illustrated using traffic and pedestrian evacuation data.

This paper is intended to stimulate discussion on best practices for developing, calibrating, and testing macroscopic and microscopic evacuation models. It does not prescribe a one-size-fits-all solution for evacuation data fitting approaches, but it provides an overview of existing methods and analyses their advantages and limitations.

References

Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transportation Research Part B: Methodological 45, 605-617 (2011). doi:10.1016/j.trb.2010.11.004

Cepolina, E.M.: Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows. Fire Safety Journal 44, 532-544 (2009). doi:10.1016/j.firesaf.2008.11.002

Lighthill, M.J., Whitham, G.B.: On kinematic waves II. a theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229, 317-345 (1955). doi:10.1098/rspa.1955.0089

Richards, P.I.: Shock waves on the highway. Operations Research 4, 42-51 (1956). doi:10.1287/opre.4.1.42

Predtechenskii, V.M., Milinskiĭ, A.I.: Planning for foot traffic flow in buildings. The National Bureau of Standards, U.S. Dept. of Commerce, and the National Science Foundation, Washington, DC (1978)

Gwynne, S.M.V., Rosenbaum, E.R.: Employing the hydraulic model in assessing emergency movement. In: SFPE Handbook of Fire Protection Engineering, pp. 2115-2151. Springer New York (2016). doi:10.1007/978-1-4939-2565-0textunderscore59

Najmanová, H., Ronchi, E.: Data for: Experimental data about the evacuation of preschool children from nursery schools, Part II: Movement characteristics and behaviour (2023). doi:10.5281/ZENODO.7377045

Rohaert, A., Kuligowski, E.D., Ardinge, A., Wahlqvist, J., Gwynne, S.M., Kimball, A., Noureddine Bénichou, Ronchi, E.: Dataset of traffic dynamics during the 2019 Kincade Wildfire Evacuation (2022). doi:10.5281/ZENODO.7410114

Rohaert, A., Araghi, N.J., Kuligowski, E.D., Ronchi, E.: Dataset of traffic dynamics during the 2020 Glass Wildfire Evacuation (2023). doi:10.5281/ZENODO.7483487

Rohaert, A.: Data fitting script for speed/flow density relationships (2024). doi:10.5281/zenodo.10990917

Greenshields, B., Bibbins, J., Channing, W., Miller, H.: A study of traffic capacity. Highway Research Board proceedings (1935)

Older, S.J.: Movement of pedestrians on footways in shopping streets. Traffic Engineering & Control 10, 160 (1968)

Fruin, J.J.: Designing for pedestrians a level of service concept. Polytechnic University (1970)

Daganzo, C.F.: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological 28, 269-287 (1994). doi:10.1016/0191-2615(94)90002-7

Newell, G.F.: Nonlinear Effects in the Dynamics of Car Following. Operations Research 9(2), 209-229 (1961). doi:10.1287/opre.9.2.209

Franklin, R.: The structure of a traffic shock wave. Civil Engineering Pulb. Wks. Rev 56, 1186-1188 (1961)

Del Castillo, J.M., Benítez, F.G.: On the functional form of the speed-density relationship - Part I: General theory. Transportation Research Part B: Methodological 29, 373-389 (1995). doi:10.1016/0191-2615(95)00008-2

Weidmann, U.: Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs. Tech. rep., ETH Zurich (1993). doi:10.3929/ETHZ-B-000242008

Qu, X., Wang, S., Zhang, J.: On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models. Transportation Research Part B: Methodological 73, 91-102 (2015). doi:10.1016/j.trb.2015.01.001

Underwood, R.T.: Speed, volume and density relationships. Quality and Theory of Traffic Flow. A Symposium, Yale University Bureau of Highway Traffic pp. 141-188 (1961). Publisher: Bureau of Highway Traffic, Yale University

Rohaert, A., Janfeshanaraghi, N., Kuligowski, E., Ronchi, E.: The analysis of traffic data of wildfire evacuation: the case study of the 2020 Glass Fire. Fire Safety Journal 141 (2023). doi:10.1016/j.firesaf.2023.103909

Rohaert, A., Kuligowski, E.D., Ardinge, A., Wahlqvist, J., Gwynne, S.M., Kimball, A., Bénichou, N., Ronchi, E.: Traffic dynamics during the 2019 Kincade wildfire evacuation. Transportation Research Part D: Transport and Environment 116 (2023). doi:10.1016/j.trd.2023.103610

Najmanová, H., Ronchi, E.: Experimental data about the evacuation of preschool children from nursery schools, Part II: Movement characteristics and behaviour. Fire Safety Journal 139 (2023). doi:10.1016/j.firesaf.2023.103797

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)

Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 55-67 (1970). doi:10.1080/00401706.1970.10488634

Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273-297 (1995). doi:10.1007/BF00994018

Muller, P., Parmigiani, G.: Optimal Design via Curve Fitting of Monte Carlo Experiments. Journal of the American Statistical Association 90, 1322-1322 (1995). doi:10.2307/2291522

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2005). doi:10.7551/mitpress/3206.001.0001

Parzen, E.: Nonparametric Statistical Data Modeling. Journal of the American Statistical Association 74, 105-121 (1979). doi:10.1080/01621459.1979.10481621

Bode, N.W., Ronchi, E.: Statistical Model Fitting and Model Selection in Pedestrian Dynamics Research. Collective Dynamics 4 (2019). doi:10.17815/CD.2019.20

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY (2013)

Cover image

Downloads

Published

03.07.2024

How to Cite

Rohaert, A., Wahlqvist, J., Najmanová, H., Bode, N., & Ronchi, E. (2024). The Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships. Collective Dynamics, 9, 1–9. https://doi.org/10.17815/CD.2024.177

Issue

Section

Special Issue of Pedestrian and Evacuation Dynamics 2023

Categories