Exploring the Braess Paradox: Static Versus Dynamic Assignment
DOI:
https://doi.org/10.17815/CD.2025.190Keywords:
Braess paradox, Closed system, Flow balancing, User & system optima, Interacting particle systems, Dynamic assignment, Monte Carlo simulationAbstract
The Braess paradox is a well-known phenomenon initially observed in road traffic flow. It points out that increasing network capacity can lead to poorer performance in congested situations, when the drivers attempt to optimise their travel time individually. This paradox is not limited to road transport, but also extends to various information networks. In this article, we examine the Braess paradox in a closed network where demand remains constant. First, we determine the user and global optima of the deterministic system in stationary states with flow balancing. We present explicit formulae for the density intervals at which the Braess paradox occurs. We then compute Monte Carlo simulations of a stochastic mesoscopic traffic model using aggregate data obtained from a queueing model to explore the results. Static assignment models match the deterministic stationary results. In addition, the simulations assess the effectiveness of dynamic assignment, whereby drivers select routes in real time to minimise travel time. Interestingly, behaviour with dynamic assignment deviates from the generic static assignment results, particularly in highly congested situations. These results emphasise the significance of dynamic route selection in relation to Braess's paradox.
References
Pigou, A.: The economics of Welfare. Routledge (2002). URL https://www.taylorfrancis.com/books/mono/10.4324/9781351304368/economics-welfare-arthur-pigou
Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung (Mathematical Methods of Operations Research) 12, 258 (1968). doi:10.1007/BF01918335
Wardrop, J.: Road paper. Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers 1(3), 325-362 (1952). doi:10.1680/ipeds.1952.11259
Roughgarden, T.: On the severity of Braess's paradox: Designing networks for selfish users is hard. Journal of Computer and System Sciences 72, 922 (2006). doi:10.1016/j.jcss.2005.05.009
Acemoglu, D., Makhdoumi, A., Malekian, A.: Informational Braess' paradox: The effect of information on traffic congestion. Operational Research 66, 893 (2018). doi:10.1287/opre.2017.1712
Bittihn, S., Schadschneider, A.: Braess’ paradox in the age of traffic information. Journal of Statistical Mechanics: Theory and Experiment 2021(3), 033401 (2021). doi:10.1088/1742-5468/abdeae
Pöppe, C.: Der optimierte Verkehrsstau oder das Paradox von Braess. Spektrum.de Scilogs (2021). URL https://scilogs.spektrum.de/hlf/der-optimierte-verkehrsstau-oder-das-paradox-von-braess/
Wang, A., Tang, Y., Mohmand, Y., Xu, P.: Modifying link capacity to avoid Braess paradox considering elastic demand. Physica A: Statistical Mechanics and its Applications 605, 127951 (2022). doi:10.1016/j.physa.2022.127951
Dafermos, S., Nagurney, A.: On some traffic equilibrium theory paradoxes. Transportation Research Part B: Methodological 18, 101 (1984). doi:10.1016/0191-2615(84)90023-7
Steinberg, R., Zangwill, W.: The prevalence of Braess' paradox. Transportation Science 17, 301 (1983). doi:10.1287/trsc.17.3.301
Valiant, G., Roughgarden, T.: Braess's paradox in large random graphs. In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 296-305 (2006). doi:10.1145/1134707.1134740
Baker, L.: Removing roads and traffic lights speeds urban travel. Scientific American pp. 20-21 (2009). URL https://www.scientificamerican.com/article/removing-roads-and-traffic-lights/
Easley, D., Kleinberg, J.: Networks, crowds, and markets: Reasoning about a highly connected world, vol. 1. Cambridge University Press (2010). URL https://www.cs.cornell.edu/home/kleinber/networks-book/
Knödel, W.: Graphentheoretische Methoden und ihre Anwendungen, vol. 13. Springer-Verlag (1969). doi:10.1007/978-3-642-95121-3
Kolata, G.: What if they closed 42nd street and nobody noticed. New York Times 25, 38 (1990). URL https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
Cohen, J.: The counterintuitive in conflict and cooperation. Am. Scientist 76, 577 (1988). URL https://trid.trb.org/View/289989
Xia, Y., Hill, D.: Dynamic Braess's paradox in complex communication networks. IEEE Transactions on Circuits and Systems II: Express Briefs 60(3), 172-176 (2013). doi:10.1109/TCSII.2013.2240912
Huant, S., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Martins, F., Bayot, V., Wallart, X., Desplanque, L., Pala, M.G.: Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks. AIP Conference Proceedings 1566(1), 229-230 (2013). doi:10.1063/1.4848369
Manik, D., Witthaut, D., Timme, M.: Predicting Braess' paradox in supply and transport networks. arXiv:2205.14685 (2022). URL https://arxiv.org/abs/2205.14685
Nagurney, L., Nagurney, A.: Physical proof of the occurrence of the Braess paradox in electrical circuits. Europhysics Letters 115, 28004 (2016). doi:10.1209/0295-5075/115/28004
Coletta, T., Jacquod, P.: Linear stability and the Braess paradox in nonlinear electric transport. Physical Review E 93, 032222 (2016). doi:10.1103/PhysRevE.93.032222
Tchuisseu, E., Gomila, D., Colet, P., Witthaut, D., Timme, M., Schäfer, B.: Curing Braess’ paradox by secondary control in power grids. New Journal of Physics 20(8), 083005 (2018). doi:10.1088/1367-2630/aad490
Witthaut, D., Timme, M.: Braess's paradox in oscillator networks, desynchronization and power outage. New Journal of Physics 14(8), 083036 (2012). doi:10.1088/1367-2630/14/8/083036
Pala, M., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Martins, F., Bayot, V., Wallart, X., Desplanque, L., Huant, S.: Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox. Physical Review Letters 108(7), 076802 (2012). doi:10.1103/PhysRevLett.108.076802
Donovan, G.: Biological version of Braess' paradox arising from perturbed homeostasis. Physical Review E 98, 062406 (2018). doi:10.1103/PhysRevE.98.062406
Fouladzadeh, A., Dorraki, M., Min, K., Cockshell, M., Thompson, E., Verjans, J., Allison, A., Bonder, C., Abbott, D.: The development of tumour vascular networks. Communications Biology 4(1), 1111 (2021). doi:10.1038/s42003-021-02632-x
Dong, A., Sohn, L., Lustig, M.: Metal-pad-enhanced resistive pulse sensor reveals complex-valued Braess paradox. Physical Review. E 108(1-1), 014408 (2023). doi:10.1103/PhysRevE.108.014408
Banerjee, K., Bhattacharyya, K.: Open chemical reaction networks, steady-state loads and Braess-like paradox. arXiv:1410.4299 (2014). URL http://arxiv.org/abs/1410.4299
Mizrak, O., Ozalp, N.: Fractional analog of a chemical system inspired by Braess’ paradox. Computational and Applied Mathematics 37, 2503-2518 (2018). doi:10.1007/s40314-017-0462-9
Cohen, J., Horowitz, P.: Paradoxical behaviour of mechanical and electrical networks. Nature 352, 699 (1991). doi:10.1038/352699a0
Penchina, C., Penchina, L.: The Braess paradox in mechanical, traffic, and other networks. American Journal of Physics 71(5), 479 (2003). doi:10.1119/1.1538553
Zhitlukhina, E., Belogolovskii, M., De Leo, N., Fretto, M., Sosso, A., Seidel, P.: Quantum coherent transport in a three-arm beam splitter and a Braess paradox. International Journal of Quantum Information 15(08), 1740011 (2017). doi:10.1142/S0219749917400111
Drinko, A., Andrade, F.M., Bazeia, D.: Narrow peaks of full transmission in simple quantum graphs. Physical Review A 100, 062117 (2019). doi:10.1103/PhysRevA.100.062117
Banerjee, A., Bej, P.: Braess paradox in a quantum network. Physical Review A 104, 052622 (2021). doi:10.1103/PhysRevA.104.052622
Braess, D.: A Paradox on Traffic Networks. https://homepage.ruhr-uni-bochum.de/dietrich.braess/#paradox (2019). [Online; accessed 25-Mai-2024]
Yao, J., Cheng, Z., Chen, A.: Bibliometric analysis and systematic literature review of the traffic paradoxes (1968-2022). Transportation Research Part B: Methodological 177, 102832 (2023). doi:10.1016/j.trb.2023.102832
Irvine, A.: How Braess' paradoxon solves Newcomb's problem. International Studies in the Philosophy of Science 7, 141 (1993). doi:10.1080/02698599308573460
Rapoport, A., Kugler, T., Dugar, S., Gisches, E.: Choice of routes in congested traffic networks: Experimental tests of the Braess paradox. Games and Economic Behavior 65, 538 (2009). doi:10.1016/j.geb.2008.02.007
Zhang, H.F., Yang, Z., Wu, Z.X., Wang, B.H., Zhou, T.: Braess's paradox in epidemic game: better condition results in less payoff. Scientific Reports 3, 3292 (2013). doi:10.1038/srep03292
Skinner, B.: The price of anarchy in basketball. Journal of Quantitative Analysis in Sports 6, 3 (2009). doi:10.2202/1559-0410.1217
Nagurney, A., Parkes, D., Daniele, P.: The internet, evolutionary variational inequalities, and the time-dependent Braess paradox. Computational Management Science 4, 355 (2007). doi:10.1007/s10287-006-0027-7
Turner, K., Wolpert, D.: Collective intelligence and Braess' paradox. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, p. 104 (2000). URL https://www.aaai.org/Papers/AAAI/2000/AAAI00-016.pdf
Zhu, W., Zhang, J., Ye, S., Xiang, W.: Braess paradox under the bi-objective user equilibrium. Expert Systems with Applications 213, 118871 (2023). doi:10.1016/j.eswa.2022.118871
Colombo, R., Holden, H.: On the Braess paradox with nonlinear dynamics and control theory. Journal of Optimization Theory and Applications 168, 216 (2016). doi:10.1007/s10957-015-0729-5
Sousa, A., Chaves, A., Farias, G., Peeters, F.: Braess paradox at the mesoscopic scale. Physical Review B 88, 245417 (2013). doi:10.1103/PhysRevB.88.245417
Pala, M., Sellier, H., Hackens, B., Martins, F., Bayot, V., Huant, S.: A new transport phenomenon in nanostructures: a mesoscopic analog of the Braess paradox encountered in road networks. Nanoscale Research Letters 7, 1-4 (2012). doi:10.1186/1556-276X-7-472
Cohen, J.E., Kelly, F.P.: A paradox of congestion in a queuing network. Journal of Applied Probability 27(3), 730-734 (1990). doi:10.2307/3214558
Kelly, F.P.: Network routing. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 337(1647), 343-367 (1991). doi:10.1098/rsta.1991.0129
Calvert, B., Solomon, W., Ziedins, I.: Braess's paradox in a queueing network with state-dependent routing. Journal of Applied Probability 34(1), 134-154 (1997). doi:10.2307/3215182
Lin, W.H., Lo, H.: Investigating Braess' paradox with time-dependent queues. Transportation Science 43, 117 (2009). doi:10.1287/trsc.1090.0258
Bazzan, A., Klügl, F.: Case studies on the Braess paradox: Simulating route recommendation and learning in abstract and microscopic models. Transportation Research Part C: Emerging Technologies 13, 299 (2005). doi:10.1016/j.trc.2005.07.003
Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally asymmetric exclusion processes. Physical Review E 94, 062312 (2016). doi:10.1103/PhysRevE.94.062312
Bittihn, S., Schadschneider, A.: Braess paradox in networks of stochastic microscopic traffic models. Proceedings of the Traffic and Granular Flow 2017 Conference p. 45 (2019). doi:10.1007/978-3-030-11440-4_6
Case, D., Liu, Y., Kiss, I., Angilella, J.R., Motter, A.: Braess's paradox and programmable behaviour in microfluidic networks. Nature 574, 647 (2019). doi:10.1038/s41586-019-1701-6
Schadschneider, A., Bittihn, S.: Braess' paradox in networks with microscopic stochastic dynamics and traffic information. Proceedings of the Traffic and Granular Flow 2019 Conference p. 563 (2020). doi:10.1007/978-3-030-55973-1_69
Cheng, Z., Yao, J., Chen, A., An, S.: Analysis of a multiplicative hybrid route choice model in stochastic assignment paradox. Transportmetrica A: Transport Science 18(3), 1544-1568 (2022). doi:10.1080/23249935.2021.1953189
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2025). URL https://www.R-project.org/
Tordeux, A., Lämmel, G., Hänseler, F.S., Steffen, B.: A mesoscopic model for large-scale simulation of pedestrian dynamics. Transportation Research Part C: Emerging Technologies 93, 128-147 (2018). doi:10.1016/j.trc.2018.05.021
Klamroth, K., Lang, B., Seyfried, A., Stiglmayr, M.: Network simulation for pedestrian flows with hydefs. Collective dynamics 5, 1-16 (2020)
Andjel, E.D.: Invariant measures for the zero range process. The Annals of Probability 10(3), 525-547 (1982). doi:10.1214/aop/1176993765
Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. Journal of Physics A: Mathematical and General 38(19), R195 (2005). doi:10.1088/0305-4470/38/19/R01
Challet, D., Zhang, Y.C.: On the minority game: Analytical and numerical studies. Physica A: Statistical Mechanics and its Applications 256(3-4), 514-532 (1998). doi:10.1016/S0378-4371(98)00260-X
Moro, E.: The minority game: An introductory guide. Advances in Condensed Matter and Statistical Physics (2004). URL https://arxiv.org/abs/cond-mat/0402651
Cavagna, A.: Irrelevance of memory in the minority game. Physical Review E 59(4), R3783 (1999). doi:10.1103/PhysRevE.59.R3783
Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transportation Science 39, 446 (2005). doi:10.1287/trsc.1050.0127
Nagurney, A.: The negation of the Braess paradox as demand increases: The wisdom of crowds in transportation networks. Europhysics Letters 91, 48002 (2010). doi:10.1209/0295-5075/91/48002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sylvain Lassarre, Andreas Schadschneider, Antoine Tordeux

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).