The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations

Authors

  • Michael J. Seitz Munich University of Applied Sciences, Munich, Germany and Technische Universität München, Garching, Germany
  • Felix Dietrich Munich University of Applied Sciences, Munich, Germany and Technische Universität München, Garching, Germany
  • Gerta Köster Munich University of Applied Sciences, Munich, Germany
  • Hans-Joachim Bungartz Technische Universität München, Garching, Germany

DOI:

https://doi.org/10.17815/CD.2016.2

Keywords:

Crowd models, simulation, microscopic, scalar fields, superposition, social forces, local optimisation, pedestrians, discretisation, comparison of models

Abstract

Models using a superposition of scalar fields for navigation are prevalent in microscopic pedestrian stream simulations. However, classifications, differences, and similarities of models are not clear at the conceptual level of navigation mechanisms. In this paper, we describe the superposition of scalar fields as an approach to microscopic crowd modelling and corresponding motion schemes. We use this background discussion to focus on the similarities and differences of models, and find that many models make use of similar mechanisms for the navigation of virtual agents. In some cases, the differences between models can be reduced to differences between discretisation schemes. The interpretation of scalar fields varies across models, but most of the time this variation does not have a large impact on simulation outcomes. The conceptual analysis of different models of pedestrian dynamics allows for a better understanding of their capabilities and limitations and may lead to better model development and validation.

Author Biography

Michael J. Seitz, Munich University of Applied Sciences, Munich, Germany and Technische Universität München, Garching, Germany

 

References

Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.): The Conference in Pedestrian and Evacuation Dynamics 2014 (PED 2014), Transportation Research Procedia, Pages 1-818, vol. 2. Elsevier, Delft, The Netherlands (2014). URL http://www.sciencedirect.com/science/journal/23521465/2/

Strube, G.: Generative theories in cognitive psychology. Theory & Psychology 10(1), 117-125 (2000). doi:10.1177/0959354300010001606

Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44(3), 437-445 (2009). doi:10.1016/j.buildenv.2008.04.002

Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242-255 (2009). doi:10.1016/j.trf.2008.12.004

Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies 37(0), 193-209 (2013). doi:10.1016/j.trc.2013.02.005

Gipps, P., Marksjö, B.: A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation 27(2-3), 95-105 (1985). doi:10.1016/0378-4754(85)90027-8

Blue, V.J., Embrechts, M.J., Adler, J.L.: Cellular automata modeling of pedestrian movements. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2320-2323 (1997)

Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35, 293-312 (2001). doi:10.1016/S0191-2615(99)00052-1

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487-490 (2000). doi:10.1038/35035023

Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425-442 (2011). doi:10.3934/nhm.2011.6.425

Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010). doi:10.1103/PhysRevE.82.046111

Johnson, N.R.: Panic and the breakdown of social order: Popular myth, social theory, empirical evidence. Sociological Focus 20(3), 171-183 (1987). doi:10.1080/00380237.1987.10570950

Aguirre, B.E.: Commentary on "understanding mass panic and other collective responses to threat and disaster": Emergency evacuations, panic, and social psychology. Psychiatry 68(2), 121-129 (2005). doi:10.1521/psyc.2005.68.2.121

Drury, J., Novelli, D., Stott, C.: Representing crowd behaviour in emergency planning guidance: 'mass panic' or collective resilience? Resilience: International Policies, Practices and Discourses 1, 18-37 (2013). doi:10.1080/21693293.2013.765740

Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72, 026112 (2005). doi:10.1103/PhysRevE.72.026112

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010). doi:10.1371/journal.pone.0010047

Dietrich, F., Köster, G., Seitz, M., von Sivers, I.: Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics. Journal of Computational Science 5(5), 841-846 (2014). doi:10.1016/j.jocs.2014.06.005

Fukui, M., Ishibashi, Y.: Self-organized phase transitions in cellular automaton models for pedestrians. Journal of the Physical Society of Japan 68(8), 2861-2863 (1999). doi:10.1143/JPSJ.68.2861

Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Physical Review E 85(2-1), 021119 (2012). doi:10.1103/PhysRevE.85.021119

Was, J., Lubas, R.: Adapting social distances model for mass evacuation simulation. Journal of Cellular Automata 8, 395-405 (2013). Journal of Cellular Automata, Old City Publishing

Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment 2004(10), P10011 (2004). doi:10.1088/1742-5468/2004/10/P10011

Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Physical Review E 89(6), 062801 (2014). doi:10.1103/PhysRevE.89.062801

Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E 86(4), 046108 (2012). doi:10.1103/PhysRevE.86.046108

Seitz, M.J., Köster, G.: How update schemes influence crowd simulations. Journal of Statistical Mechanics: Theory and Experiment 7, P07002 (2014). doi:10.1088/1742-5468/2014/07/P07002

Seitz, M.J., Dietrich, F., Köster, G.: The effect of stepping on pedestrian trajectories. Physica A: Statistical Mechanics and its Applications 421, 594-604 (2015). doi:10.1016/j.physa.2014.11.064

Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference, pp. 763-782. Miller Freeman Game Group, San Francisco, California, San Jose, California (1999). URL http://www.red3d.com/cwr/papers/1999/gdc99steer.html

Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760-772 (1998). doi:10.1177/027836499801700706

Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences 108(17), 6884-6888 (2011). doi:10.1073/pnas.1016507108

Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Physical Review E 90, 042812 (2014). doi:10.1103/PhysRevE.90.042812

Sugiyama, Y.: Optimal velocity model for traffic flow. Computer Physics Communications 121-122, 399-401 (1999). doi:10.1016/S0010-4655(99)00366-5

Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer (1986)

Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE TRANSACTIONS on Information and Systems E87-D, 726-732 (2004)

Kneidl, A., Borrmann, A., Hartmann, D.: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models. Advanced Engineering Informatics 26(4), 669-680 (2012). doi:10.1016/j.aei.2012.03.006

Kretz, T., Bönisch, C., Vortisch, P.: Comparison of various methods for the calculation of the distance potential field. In: Pedestrian and Evacuation Dynamics 2008, pp. 335-346. Springer Berlin Heidelberg (2009). doi:10.1007/978-3-642-04504-2_29

Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93(4), 1591-1595 (1996). doi:10.1073/pnas.93.4.1591

Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12, 043032 (2010). doi:10.1088/1367-2630/12/4/043032

Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344-352. Delft, The Netherlands (2014). doi:10.1016/j.trpro.2014.09.029

Kretz, T.: Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009(03), P03012 (2009). doi:10.1088/1742-5468/2009/03/P03012

Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous speed profiles in discrete models for pedestrian simulation. In: 93rd Transportation Research Board annual meeting, Washington, January 2014 - Committee number AHB45 - TRB Committee on Traffic Flow Theory and Characteristics (2014). URL http://arxiv.org/abs/1401.8132

von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological 74, 104 - 117 (2015). doi:10.1016/j.trb.2015.01.009

Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6), 063305 (2013). doi:10.1103/PhysRevE.87.063305

Robinson, S.: Simulation: The Practice of Model Development and Use. John Wiley & Sons (2004)

Lewin, K.: Field theory in social science: Selected theoretical papers. Harper, New York (1951)

Mcmullin, E.: What do physical models tell us? In: B.V. Rootselaar, J.F. Staal (eds.) Logic, Methodology and Philosophy of Science III, Studies in Logic and the Foundations of Mathematics, vol. 52, pp. 385-396. Elsevier (1968). doi:10.1016/S0049-237X(08)71206-0

Gigerenzer, G., Todd, P.M., A.B.C. Research Group: Simple Heuristics That Make Us Smart. Oxford University Press, Oxford (1999)

Moussaïd, M., Nelson, J.D.: Simple heuristics and the modelling of crowd behaviours. In: U. Weidmann, U. Kirsch, M. Schreckenberg (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 75-90. Springer International Publishing (2014). doi:10.1007/978-3-319-02447-9_5

Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influence of group formations in a crowd. Contemporary Social Science 6(3), 397-414 (2011). doi:10.1080/21582041.2011.619867

Gigerenzer, G.: Why heuristics work. Perspectives on Psychological Science 3(1), 20-29 (2008). doi:10.1111/j.1745-6916.2008.00058.x

Downloads

Published

15.03.2016

How to Cite

Seitz, M. J., Dietrich, F., Köster, G., & Bungartz, H.-J. (2016). The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations. Collective Dynamics, 1, 1–19. https://doi.org/10.17815/CD.2016.2

Issue

Section

Articles