
The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations
Abstract
Keywords
Full Text:
PDFReferences
Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.): The Conference in Pedestrian and Evacuation Dynamics 2014 (PED 2014), Transportation Research Procedia, Pages 1-818, vol. 2. Elsevier, Delft, The Netherlands (2014). URL http://www.sciencedirect.com/science/journal/23521465/2/
Strube, G.: Generative theories in cognitive psychology. Theory & Psychology 10(1), 117-125 (2000). doi:10.1177/0959354300010001606
Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282
Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44(3), 437-445 (2009). doi:10.1016/j.buildenv.2008.04.002
Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242-255 (2009). doi:10.1016/j.trf.2008.12.004
Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies 37(0), 193-209 (2013). doi:10.1016/j.trc.2013.02.005
Gipps, P., Marksjö, B.: A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation 27(2-3), 95-105 (1985). doi:10.1016/0378-4754(85)90027-8
Blue, V.J., Embrechts, M.J., Adler, J.L.: Cellular automata modeling of pedestrian movements. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2320-2323 (1997)
Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35, 293-312 (2001). doi:10.1016/S0191-2615(99)00052-1
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487-490 (2000). doi:10.1038/35035023
Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425-442 (2011). doi:10.3934/nhm.2011.6.425
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010). doi:10.1103/PhysRevE.82.046111
Johnson, N.R.: Panic and the breakdown of social order: Popular myth, social theory, empirical evidence. Sociological Focus 20(3), 171-183 (1987). doi:10.1080/00380237.1987.10570950
Aguirre, B.E.: Commentary on "understanding mass panic and other collective responses to threat and disaster": Emergency evacuations, panic, and social psychology. Psychiatry 68(2), 121-129 (2005). doi:10.1521/psyc.2005.68.2.121
Drury, J., Novelli, D., Stott, C.: Representing crowd behaviour in emergency planning guidance: 'mass panic' or collective resilience? Resilience: International Policies, Practices and Discourses 1, 18-37 (2013). doi:10.1080/21693293.2013.765740
Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72, 026112 (2005). doi:10.1103/PhysRevE.72.026112
Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010). doi:10.1371/journal.pone.0010047
Dietrich, F., Köster, G., Seitz, M., von Sivers, I.: Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics. Journal of Computational Science 5(5), 841-846 (2014). doi:10.1016/j.jocs.2014.06.005
Fukui, M., Ishibashi, Y.: Self-organized phase transitions in cellular automaton models for pedestrians. Journal of the Physical Society of Japan 68(8), 2861-2863 (1999). doi:10.1143/JPSJ.68.2861
Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Physical Review E 85(2-1), 021119 (2012). doi:10.1103/PhysRevE.85.021119
Was, J., Lubas, R.: Adapting social distances model for mass evacuation simulation. Journal of Cellular Automata 8, 395-405 (2013). Journal of Cellular Automata, Old City Publishing
Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment 2004(10), P10011 (2004). doi:10.1088/1742-5468/2004/10/P10011
Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Physical Review E 89(6), 062801 (2014). doi:10.1103/PhysRevE.89.062801
Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E 86(4), 046108 (2012). doi:10.1103/PhysRevE.86.046108
Seitz, M.J., Köster, G.: How update schemes influence crowd simulations. Journal of Statistical Mechanics: Theory and Experiment 7, P07002 (2014). doi:10.1088/1742-5468/2014/07/P07002
Seitz, M.J., Dietrich, F., Köster, G.: The effect of stepping on pedestrian trajectories. Physica A: Statistical Mechanics and its Applications 421, 594-604 (2015). doi:10.1016/j.physa.2014.11.064
Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference, pp. 763-782. Miller Freeman Game Group, San Francisco, California, San Jose, California (1999). URL http://www.red3d.com/cwr/papers/1999/gdc99steer.html
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760-772 (1998). doi:10.1177/027836499801700706
Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences 108(17), 6884-6888 (2011). doi:10.1073/pnas.1016507108
Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Physical Review E 90, 042812 (2014). doi:10.1103/PhysRevE.90.042812
Sugiyama, Y.: Optimal velocity model for traffic flow. Computer Physics Communications 121-122, 399-401 (1999). doi:10.1016/S0010-4655(99)00366-5
Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer (1986)
Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)
Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE TRANSACTIONS on Information and Systems E87-D, 726-732 (2004)
Kneidl, A., Borrmann, A., Hartmann, D.: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models. Advanced Engineering Informatics 26(4), 669-680 (2012). doi:10.1016/j.aei.2012.03.006
Kretz, T., Bönisch, C., Vortisch, P.: Comparison of various methods for the calculation of the distance potential field. In: Pedestrian and Evacuation Dynamics 2008, pp. 335-346. Springer Berlin Heidelberg (2009). doi:10.1007/978-3-642-04504-2_29
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93(4), 1591-1595 (1996). doi:10.1073/pnas.93.4.1591
Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)
Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12, 043032 (2010). doi:10.1088/1367-2630/12/4/043032
Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344-352. Delft, The Netherlands (2014). doi:10.1016/j.trpro.2014.09.029
Kretz, T.: Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009(03), P03012 (2009). doi:10.1088/1742-5468/2009/03/P03012
Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous speed profiles in discrete models for pedestrian simulation. In: 93rd Transportation Research Board annual meeting, Washington, January 2014 - Committee number AHB45 - TRB Committee on Traffic Flow Theory and Characteristics (2014). URL http://arxiv.org/abs/1401.8132
von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological 74, 104 - 117 (2015). doi:10.1016/j.trb.2015.01.009
Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6), 063305 (2013). doi:10.1103/PhysRevE.87.063305
Robinson, S.: Simulation: The Practice of Model Development and Use. John Wiley & Sons (2004)
Lewin, K.: Field theory in social science: Selected theoretical papers. Harper, New York (1951)
Mcmullin, E.: What do physical models tell us? In: B.V. Rootselaar, J.F. Staal (eds.) Logic, Methodology and Philosophy of Science III, Studies in Logic and the Foundations of Mathematics, vol. 52, pp. 385-396. Elsevier (1968). doi:10.1016/S0049-237X(08)71206-0
Gigerenzer, G., Todd, P.M., A.B.C. Research Group: Simple Heuristics That Make Us Smart. Oxford University Press, Oxford (1999)
Moussaïd, M., Nelson, J.D.: Simple heuristics and the modelling of crowd behaviours. In: U. Weidmann, U. Kirsch, M. Schreckenberg (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 75-90. Springer International Publishing (2014). doi:10.1007/978-3-319-02447-9_5
Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influence of group formations in a crowd. Contemporary Social Science 6(3), 397-414 (2011). doi:10.1080/21582041.2011.619867
Gigerenzer, G.: Why heuristics work. Perspectives on Psychological Science 3(1), 20-29 (2008). doi:10.1111/j.1745-6916.2008.00058.x
DOI: http://dx.doi.org/10.17815/CD.2016.2
Copyright (c) 2016 Michael J. Seitz, Felix Dietrich, Gerta Köster, Hans-Joachim Bungartz

This work is licensed under a Creative Commons Attribution 4.0 International License.