Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding


  • Benedikt Kleinmeier Department of Computer Science and Mathematics, Munich University of Applied Sciences, Munich, Germany and Department of Informatics, Technical University of Munich, Garching, Germany
  • Benedikt Zönnchen Department of Computer Science and Mathematics, Munich University of Applied Sciences, Munich, Germany and Department of Informatics, Technical University of Munich, Garching, Germany
  • Marion Gödel Department of Computer Science and Mathematics, Munich University of Applied Sciences, Munich, Germany and Department of Informatics, Technical University of Munich, Garching, Germany
  • Gerta Köster Department of Computer Science and Mathematics, Munich University of Applied Sciences, Munich, Germany



pedestrians, agents, crowds


Pedestrian dynamics is an interdisciplinary field of research. Psychologists, sociologists, traffic engineers, physicists, mathematicians and computer scientists all strive to understand the dynamics of a moving crowd. In principle, computer simulations offer means to further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of approaches, with very different characteristics, compete. Often only the experts in one special model type are able to assess the consequences these characteristics have on a simulation study. Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics need a tool to compare competing approaches. Developers, too, would profit from an easy way to get insight into an alternative modeling ansatz. Vadere meets this interdisciplinary demand by offering an open-source simulation framework that is lightweight in its approach and in its user interface while offering pre-implemented versions of the most widely spread models.


Drury, J., Reicher, S.: Collective action and psychological change: The emergence of new social identities. British Journal of Social Psychology 39(4), 579-604 (2010). doi:10.1348/014466600164642

Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282

Seitz, M.J.: Simulating pedestrian dynamics: Towards natural locomotion and psychological decision making. Ph.D. thesis, Technische Universität München, Munich, Germany (2016). URL

Adrian, J., Bode, N., Amos, M., Baratchi, M., Beermann, M., Boltes, M., Corbetta, A., Dezecache, G., Drury, J., Fu, Z., Geraerts, R., Gwynne, S., Hofinger, G., Hunt, A., Kanters, T., Kneidl, A., Konya, K., Köster, G., Küpper, M., Michalareas, G., Neville, F., Ntontis, E., Reicher, S., Ronchi, E., Schadschneider, A., Seyfried, A., Shipman, A., Sieben, A., Spearpoint, M., Sullivan, G.B., Templeton, A., Toschi, F., Yücel, Z., Zanlungo, F., Zuriguel, I., van der Wal, N., van Schadewijk, F., von Krüchten, C., Wijermans, N.: A glossary for research on human crowd dynamics. Collective Dynamics (2019). doi:10.17815/CD.2019.19

Reicher, S.D.: The St. Pauls' riot: An explanation of the limits of crowd action in terms of a social identity model. European Journal of Social Psychology 14(1), 1-21 (1984). doi:10.1002/ejsp.2420140102

Drury, J., Reicher, S.: The intergroup dynamics of collective empowerment: Substantiating the social identity model of crowd behavior. Group Processes & Intergroup Relations 2(4), 381-402 (1999)

Challenger, R., Clegg, C.W., Robinson, M.A., Leigh, M.: Understanding crowd behaviours: Supporting evidence. Tech. rep., University of Leeds (2009)

Templeton, A., Drury, J., Philippides, A.: From mindless masses to small groups: Conceptualizing collective behavior in crowd modeling. Review of General Psychology 19(3), 215-229 (2015). doi:10.1037/gpr0000032

Fahy, R.F., Proulx, G., Aiman, L.: Panic or not in fire: Clarifying the misconception. Fire and Materials 36(5-6), 328-338 (2012). doi:10.1002/fam.1083

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487-490 (2000). doi:10.1038/35035023

Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Science 1(7), 1-40 (2012). doi:10.1140/epjds7

Gwynne, S.M., Boyce, K., D. Kuligowski, E., Nilsson, D., P. Robbins, A., Lovreglio, R.: Pros and cons of egress drills. In: Interflam 2016, 14th International Conference on Fire Science and Engineering (2016). URL

Gwynne, S., Kuligowski, E., Boyce, K., Nilsson, D., Robbins, A., Lovreglio, R., Thomas, J., Roy-Poirier, A.: Enhancing egress drills: Preparation and assessment of evacuee performance. Fire and Materials (2017). doi:10.1002/fam.2448

Kinateder, M., Ronchi, E., Nilsson, D., Kobes, M., Müller, M., P., P., Mühlberger, A.: Virtual reality for fire evacuation research. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 313-321 (2014). doi:10.15439/2014F94

Feng, Z., González, V.A., Amor, R., Lovreglio, R., Cabrera-Guerrero, G.: Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Computers & Education 127, 252-266 (2018). doi:10.1016/j.compedu.2018.09.002

Lovreglio, R.: A review of augmented reality applications for building evacuation. In: 17th International Conference on Computing in Civil and Building Engineering (2018). URL

Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419-424 (1984). doi:10.1038/311419a0

Antonini, G.: A discrete choice modeling framework for pedestrian walking behavior with application to human tracking in video sequences. Ph.D. thesis, École polytechnique fédérale de Lausanne (2005)

Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E 86(4), 046108 (2012). doi:10.1103/PhysRevE.86.046108

Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242-255 (2009). doi:10.1016/j.trf.2008.12.004

Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507-535 (2001). doi:10.1016/S0191-2615(01)00015-7

Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics (SIGGRAPH 2006) 25(3), 1160-1168 (2006). doi:10.1145/1141911.1142008

Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological 38(2), 169-190 (2004). doi:10.1016/S0191-2615(03)00007-9

Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44(3), 437-445 (2009). doi:10.1016/j.buildenv.2008.04.002

Gipps, P., Marksjö, B.: A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation 27(2-3), 95-105 (1985). doi:10.1016/0378-4754(85)90027-8

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8

Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A: Statistical Mechanics and its Applications 324(3-4), 689-697 (2003). doi:10.1016/S0378-4371(03)00076-1

Was, J., Gudowski, B., Matuszyk, P.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) Cellular Automata, Lecture Notes in Computer Science, vol. 4173, pp. 492-501. Springer Berlin Heidelberg (2006). doi:10.1007/11861201_57

Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012). doi:10.1016/j.physa.2011.07.056

Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Physical Review E 85(2-1), 021119 (2012). doi:10.1103/PhysRevE.85.021119

Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010). doi:10.1103/PhysRevE.82.046111

Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425-442 (2011). doi:10.3934/nhm.2011.6.425

Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Physical Review E 89(6), 062801 (2014). doi:10.1103/PhysRevE.89.062801

Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Physical Review E 90, 042812 (2014). doi:10.1103/PhysRevE.90.042812

Seitz, M.J., Bode, N.W.F., Köster, G.: How cognitive heuristics can explain social interactions in spatial movement. Journal of the Royal Society Interface 13(121), 20160439 (2016). doi:10.1098/rsif.2016.0439

Xiao, Y., Chraibi, M., Qu, Y., Tordeux, A., Gao, Z.: Investigation of voronoi diagram based direction choices using uni- and bi-directional trajectory data. Physical Review E 97(5) (2018). doi:10.1103/PhysRevE.97.052127

von Sivers, I., Köster, G.: How stride adaptation in pedestrian models improves navigation. arXiv 1401.7838(v1) (2014). URL

von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological 74, 104-117 (2015). doi:10.1016/j.trb.2015.01.009

von Sivers, I., Templeton, A., Künzner, F., Köster, G., Drury, J., Philippides, A., Neckel, T., Bungartz, H.J.: Modelling social identification and helping in evacuation simulation. Safety Science 89, 288-300 (2016). doi:10.1016/j.ssci.2016.07.001

Chraibi, M., Zhang, J.: JuPedSim: an open framework for simulating and analyzing the dynamics of pedestrians. In: SUMO2016 - Traffic, Mobility, and Logistics, Proceedings, Berichte aus dem DLR-Institut für Verkehrssystemtechnik, vol. 30, pp. 127-134. SUMO Conference 2016, Berlin (Germany), 23 May 2016 - 25 May 2016, Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Verkehrssystemtechnik, Braunschweig (2016). URL

Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6), 063305 (2013). doi:10.1103/PhysRevE.87.063305

FDS+Evac Contributors: Fire Dynamics Simulator with Evacuation (FDS+Evac). Online: (2019). Accessed 27. May 2019

Curtis, S., Best, A., Manocha, D.: Menge: A modular framework for simulating crowd movement. Collective Dynamics (2016)

Kielar, P., Biedermann, D., Borrmann, A.: MomenTUMv2: A Modular, Extensible, and Generic Agent-Based Pedestrian Behavior Simulation Framework. Tech. rep., TUM (2016). doi:10.13140/RG.2.2.21387.69929

SUMO Contributors: SUMO - Simulation of Urban MObility. Online: (2015). Accessed 11. January 2016

Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of the 1975 International Conference on Cybernetics and Society, p. 409 (1975)

Dietrich, F., Köster, G., Seitz, M., von Sivers, I.: Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics. Journal of Computational Science 5(5), 841-846 (2014). doi:10.1016/j.jocs.2014.06.005

Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760-772 (1998). doi:10.1177/027836499801700706

Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Springer Tracts in Advanced Robotics 70, 3-19 (2011). doi:10.1007/978-3-642-19457-3_1

Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual Tawaf: A Velocity-Space-Based Solution for Simulating Heterogeneous Behavior in Dense Crowds, chap. 1, pp. 181-209. Springer Science + Business Media (2013). doi:10.1007/978-1-4614-8483-7_8

Seitz, M.J., Dietrich, F., Köster, G., Bungartz, H.J.: The superposition principle: A conceptual perspective on pedestrian stream simulations. Collective Dynamics 1, A2 (2016). doi:10.17815/CD.2016.2

Hartmann, D., Mille, J., Pfaffinger, A., Royer, C.: Dynamic medium scale navigation using dynamic floor fields. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1237-1249. Springer International Publishing (2014). doi:10.1007/978-3-319-02447-9-102

Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344-352. Delft, The Netherlands (2014). doi:10.1016/j.trpro.2014.09.029

Dias, C., Lovreglio, R.: Calibrating cellular automaton models for pedestrians walking through corners. Physics Letters A 382(19), 1255-1261 (2018). doi:10.1016/j.physleta.2018.03.022

Ruggiero, L., Charitha, D., Xiang, S., Lucia, B.: Investigating pedestrian navigation in indoor open space environments using big data. Applied Mathematical Modelling 62, 499-509 (2018). doi:10.1016/j.apm.2018.06.014

Wolfram, S.: Statistical mechanics of cellular automata. Review of Modern Physics 55, 601-644 (1983). doi:10.1103/RevModPhys.55.601

Seitz, M.J., Köster, G.: How update schemes influence crowd simulations. Journal of Statistical Mechanics: Theory and Experiment 2014(7), P07002 (2014). doi:10.1088/1742-5468/2014/07/P07002

Was, J., Lubaś, R.: Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146, 199-209 (2014). doi:10.1016/j.neucom.2014.04.057

Okazaki, S.: A study of pedestrian movement in architectural space: part 1 pedestrian movement by the application of magnetic models. Transactions of the Architectural Institute of Japan 283, 111-119 (1979). doi:10.3130/aijsaxx.283.0_111

Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 10, 271-288 (2007). doi:10.1142/S0219525907001355

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010). doi:10.1371/journal.pone.0010047

Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72, 026112 (2005). doi:10.1103/PhysRevE.72.026112

Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnár-farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-352 (2005). doi:10.1177/0037549705052772

Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Metaxas, D., Popovic, J. (eds.) ACM SIGGRAPH/Eurographics Symposium on Computer animation (2007)

Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A: Statistical Mechanics and its Applications 388(17), 3600-3608 (2009). doi:10.1016/j.physa.2009.05.027

Kretz, T., Große, A., Hengst, S., Kautzsch, L., Pohlmann, A., Vortisch, P.: Quickest paths in simulations of pedestrians. Advances in Complex Systems 10, 733-759 (2011)

Johansson, F., Duives, D., Daamen, W., Hoogendoorn, S.: The many roles of the relaxation time parameter in force based models of pedestrian dynamics. Transportation Research Procedia 2, 300-308 (2014). doi:10.1016/j.trpro.2014.09.057. The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands

Chraibi, M.: Oscillating behavior within the social force model. arXiv (2014)

Conway, R.W., Johnson, B.M., Maxwell, W.L.: Some problems of digital systems simulation. Management Science 6(1), 92-110 (1959). doi:10.1287/mnsc.6.1.92

Hall, E.T.: The Hidden Dimension. Anchor (1990). URL

von Sivers, I.K.M.: Modellierung sozialpsychologischer Faktoren in Personenstromsimulationen - Interpersonale Distanz und soziale Identitäten. Ph.D. thesis, Technische Universität München (2016). URL

Zönnchen, B.: Navigation around pedestrian groups and queueing using a dynamic adaption of traveling. Bachelor's thesis, Hochschule München (2013)

Seitz, M.J., Dietrich, F., Köster, G.: The effect of stepping on pedestrian trajectories. Physica A: Statistical Mechanics and its Applications 421, 594-604 (2015). doi:10.1016/j.physa.2014.11.064

Köster, G., Zönnchen, B.: A queuing model based on social attitudes. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow '15, pp. 193-200. Springer International Publishing, Nootdorp, the Netherlands (2016). doi:10.1007/978-3-319-33482-0. 27-30 October 2015

Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21(4), 25-34 (1987). doi:10.1145/37402.37406

Wolinski, D., J. Guy, S., Olivier, A.H., Lin, M., Manocha, D., Pettré, J.: Parameter estimation and comparative evaluation of crowd simulations. Comput. Graph. Forum 33(2), 303-312 (2014). doi:10.1111/cgf.12328

Korhonen, T., Hostikka, S., Heliövaara, S., Ehtamo, H., Matikainen, K.J.: Integration of an agent based evacuation simulation and state-of-the-art fire simulation. In: Proceedings of the 7th Asia-Oceania Symposium on Fire Science & Technology, Hong Kong (2007). URL

Kielar, P.M., Borrmann, A.: Modeling pedestrians' interest in locations: A concept to improve simulations of pedestrian destination choice. Simulation Modelling Practice and Theory 61, 47-62 (2016). doi:10.1016/j.simpat.2015.11.003

Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent Development and Applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements 5(3&4), 128-138 (2012)

McGrattan, K., Hostikka, S., McDermott, R., Jason, F., Vanella, M.: Fire Dynamics Simulator User's Guide. National Institute of Standards and Technology and VTT Technical Research Centre of Finland, sixth edition edn. (2019). doi:10.6028/NIST.SP.1019

Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free first order model for pedestrian dynamics. In: Traffic and Granular Flow '15. Nootdorp, the Netherlands (2015). URL 27-30 October 2015

Graf, A.: Automated Routing in Pedestrian Dynamics. Master's thesis, Fachhochschule Aachen (2015). URL

Hanik, F.: The kiss principle. Online: fhanik/kiss.html (2006). Accessed 05. November 2018

Gipps, P.: The role of computer graphics in validating simulation models. Mathematics and Computers in Simulation 28(4), 285-289 (1986). doi:10.1016/0378-4754(86)90049-2

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA (1994)

Zönnchen, B., Köster, G.: A parallel generator for sparse unstructured meshes to solve the eikonal equation. Journal of Computational Science (2018). doi:10.1016/j.jocs.2018.09.009

Popper, K.: The Logic of Scientific Discovery (1934, 1959). Routledge Classics, London and New York (2002)

JUnit test tool, Accessed: 2018-11-07

ISO: Road vehicles -- Functional safety -- Part 6: Product development at the software level (2018). URL

RiMEA: Guideline for Microscopic Evacuation Analysis. RiMEA e.V., 3.0.0 edn. (2016). URL

Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. Journal of Statistical Mechanics: Theory and Experiment 2011(06), P06004 (2011). doi:10.1088/1742-5468/2011/06/P06004

GitLab Contributors: GitLab. Online: (2018). Accessed 26. October 2018




How to Cite

Kleinmeier, B., Zönnchen, B., Gödel, M., & Köster, G. (2019). Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding. Collective Dynamics, 4, 1–34.