Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding
DOI:
https://doi.org/10.17815/CD.2019.21Keywords:
pedestrians, agents, crowdsAbstract
Pedestrian dynamics is an interdisciplinary field of research. Psychologists, sociologists, traffic engineers, physicists, mathematicians and computer scientists all strive to understand the dynamics of a moving crowd. In principle, computer simulations offer means to further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of approaches, with very different characteristics, compete. Often only the experts in one special model type are able to assess the consequences these characteristics have on a simulation study. Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics need a tool to compare competing approaches. Developers, too, would profit from an easy way to get insight into an alternative modeling ansatz. Vadere meets this interdisciplinary demand by offering an open-source simulation framework that is lightweight in its approach and in its user interface while offering pre-implemented versions of the most widely spread models.References
Drury, J., Reicher, S.: Collective action and psychological change: The emergence of new social identities. British Journal of Social Psychology 39(4), 579-604 (2010). doi:10.1348/014466600164642
Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E 51(5), 4282-4286 (1995). doi:10.1103/PhysRevE.51.4282
Seitz, M.J.: Simulating pedestrian dynamics: Towards natural locomotion and psychological decision making. Ph.D. thesis, Technische Universität München, Munich, Germany (2016). URL https://mediatum.ub.tum.de/?id=1293050
Adrian, J., Bode, N., Amos, M., Baratchi, M., Beermann, M., Boltes, M., Corbetta, A., Dezecache, G., Drury, J., Fu, Z., Geraerts, R., Gwynne, S., Hofinger, G., Hunt, A., Kanters, T., Kneidl, A., Konya, K., Köster, G., Küpper, M., Michalareas, G., Neville, F., Ntontis, E., Reicher, S., Ronchi, E., Schadschneider, A., Seyfried, A., Shipman, A., Sieben, A., Spearpoint, M., Sullivan, G.B., Templeton, A., Toschi, F., Yücel, Z., Zanlungo, F., Zuriguel, I., van der Wal, N., van Schadewijk, F., von Krüchten, C., Wijermans, N.: A glossary for research on human crowd dynamics. Collective Dynamics (2019). doi:10.17815/CD.2019.19
Reicher, S.D.: The St. Pauls' riot: An explanation of the limits of crowd action in terms of a social identity model. European Journal of Social Psychology 14(1), 1-21 (1984). doi:10.1002/ejsp.2420140102
Drury, J., Reicher, S.: The intergroup dynamics of collective empowerment: Substantiating the social identity model of crowd behavior. Group Processes & Intergroup Relations 2(4), 381-402 (1999)
Challenger, R., Clegg, C.W., Robinson, M.A., Leigh, M.: Understanding crowd behaviours: Supporting evidence. Tech. rep., University of Leeds (2009)
Templeton, A., Drury, J., Philippides, A.: From mindless masses to small groups: Conceptualizing collective behavior in crowd modeling. Review of General Psychology 19(3), 215-229 (2015). doi:10.1037/gpr0000032
Fahy, R.F., Proulx, G., Aiman, L.: Panic or not in fire: Clarifying the misconception. Fire and Materials 36(5-6), 328-338 (2012). doi:10.1002/fam.1083
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487-490 (2000). doi:10.1038/35035023
Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Science 1(7), 1-40 (2012). doi:10.1140/epjds7
Gwynne, S.M., Boyce, K., D. Kuligowski, E., Nilsson, D., P. Robbins, A., Lovreglio, R.: Pros and cons of egress drills. In: Interflam 2016, 14th International Conference on Fire Science and Engineering (2016). URL https://www.nist.gov/publications/pros-and-cons-egress-drills
Gwynne, S., Kuligowski, E., Boyce, K., Nilsson, D., Robbins, A., Lovreglio, R., Thomas, J., Roy-Poirier, A.: Enhancing egress drills: Preparation and assessment of evacuee performance. Fire and Materials (2017). doi:10.1002/fam.2448
Kinateder, M., Ronchi, E., Nilsson, D., Kobes, M., Müller, M., P., P., Mühlberger, A.: Virtual reality for fire evacuation research. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 313-321 (2014). doi:10.15439/2014F94
Feng, Z., González, V.A., Amor, R., Lovreglio, R., Cabrera-Guerrero, G.: Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Computers & Education 127, 252-266 (2018). doi:10.1016/j.compedu.2018.09.002
Lovreglio, R.: A review of augmented reality applications for building evacuation. In: 17th International Conference on Computing in Civil and Building Engineering (2018). URL http://arxiv.org/abs/1804.04186
Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419-424 (1984). doi:10.1038/311419a0
Antonini, G.: A discrete choice modeling framework for pedestrian walking behavior with application to human tracking in video sequences. Ph.D. thesis, École polytechnique fédérale de Lausanne (2005)
Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Physical Review E 86(4), 046108 (2012). doi:10.1103/PhysRevE.86.046108
Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242-255 (2009). doi:10.1016/j.trf.2008.12.004
Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507-535 (2001). doi:10.1016/S0191-2615(01)00015-7
Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics (SIGGRAPH 2006) 25(3), 1160-1168 (2006). doi:10.1145/1141911.1142008
Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological 38(2), 169-190 (2004). doi:10.1016/S0191-2615(03)00007-9
Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44(3), 437-445 (2009). doi:10.1016/j.buildenv.2008.04.002
Gipps, P., Marksjö, B.: A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation 27(2-3), 95-105 (1985). doi:10.1016/0378-4754(85)90027-8
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295, 507-525 (2001). doi:10.1016/S0378-4371(01)00141-8
Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A: Statistical Mechanics and its Applications 324(3-4), 689-697 (2003). doi:10.1016/S0378-4371(03)00076-1
Was, J., Gudowski, B., Matuszyk, P.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) Cellular Automata, Lecture Notes in Computer Science, vol. 4173, pp. 492-501. Springer Berlin Heidelberg (2006). doi:10.1007/11861201_57
Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A: Statistical Mechanics and its Applications 391(1-2), 291-299 (2012). doi:10.1016/j.physa.2011.07.056
Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Physical Review E 85(2-1), 021119 (2012). doi:10.1103/PhysRevE.85.021119
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82(4), 046111 (2010). doi:10.1103/PhysRevE.82.046111
Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3), 425-442 (2011). doi:10.3934/nhm.2011.6.425
Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Physical Review E 89(6), 062801 (2014). doi:10.1103/PhysRevE.89.062801
Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Physical Review E 90, 042812 (2014). doi:10.1103/PhysRevE.90.042812
Seitz, M.J., Bode, N.W.F., Köster, G.: How cognitive heuristics can explain social interactions in spatial movement. Journal of the Royal Society Interface 13(121), 20160439 (2016). doi:10.1098/rsif.2016.0439
Xiao, Y., Chraibi, M., Qu, Y., Tordeux, A., Gao, Z.: Investigation of voronoi diagram based direction choices using uni- and bi-directional trajectory data. Physical Review E 97(5) (2018). doi:10.1103/PhysRevE.97.052127
von Sivers, I., Köster, G.: How stride adaptation in pedestrian models improves navigation. arXiv 1401.7838(v1) (2014). URL http://arxiv.org/abs/1401.7838v1
von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological 74, 104-117 (2015). doi:10.1016/j.trb.2015.01.009
von Sivers, I., Templeton, A., Künzner, F., Köster, G., Drury, J., Philippides, A., Neckel, T., Bungartz, H.J.: Modelling social identification and helping in evacuation simulation. Safety Science 89, 288-300 (2016). doi:10.1016/j.ssci.2016.07.001
Chraibi, M., Zhang, J.: JuPedSim: an open framework for simulating and analyzing the dynamics of pedestrians. In: SUMO2016 - Traffic, Mobility, and Logistics, Proceedings, Berichte aus dem DLR-Institut für Verkehrssystemtechnik, vol. 30, pp. 127-134. SUMO Conference 2016, Berlin (Germany), 23 May 2016 - 25 May 2016, Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Verkehrssystemtechnik, Braunschweig (2016). URL http://juser.fz-juelich.de/record/809790
Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Physical Review E 87(6), 063305 (2013). doi:10.1103/PhysRevE.87.063305
FDS+Evac Contributors: Fire Dynamics Simulator with Evacuation (FDS+Evac). Online: http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+Evac_webpages.pdf (2019). Accessed 27. May 2019
Curtis, S., Best, A., Manocha, D.: Menge: A modular framework for simulating crowd movement. Collective Dynamics (2016)
Kielar, P., Biedermann, D., Borrmann, A.: MomenTUMv2: A Modular, Extensible, and Generic Agent-Based Pedestrian Behavior Simulation Framework. Tech. rep., TUM (2016). doi:10.13140/RG.2.2.21387.69929
SUMO Contributors: SUMO - Simulation of Urban MObility. Online: www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/ (2015). Accessed 11. January 2016
Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of the 1975 International Conference on Cybernetics and Society, p. 409 (1975)
Dietrich, F., Köster, G., Seitz, M., von Sivers, I.: Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics. Journal of Computational Science 5(5), 841-846 (2014). doi:10.1016/j.jocs.2014.06.005
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760-772 (1998). doi:10.1177/027836499801700706
Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Springer Tracts in Advanced Robotics 70, 3-19 (2011). doi:10.1007/978-3-642-19457-3_1
Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual Tawaf: A Velocity-Space-Based Solution for Simulating Heterogeneous Behavior in Dense Crowds, chap. 1, pp. 181-209. Springer Science + Business Media (2013). doi:10.1007/978-1-4614-8483-7_8
Seitz, M.J., Dietrich, F., Köster, G., Bungartz, H.J.: The superposition principle: A conceptual perspective on pedestrian stream simulations. Collective Dynamics 1, A2 (2016). doi:10.17815/CD.2016.2
Hartmann, D., Mille, J., Pfaffinger, A., Royer, C.: Dynamic medium scale navigation using dynamic floor fields. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1237-1249. Springer International Publishing (2014). doi:10.1007/978-3-319-02447-9-102
Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344-352. Delft, The Netherlands (2014). doi:10.1016/j.trpro.2014.09.029
Dias, C., Lovreglio, R.: Calibrating cellular automaton models for pedestrians walking through corners. Physics Letters A 382(19), 1255-1261 (2018). doi:10.1016/j.physleta.2018.03.022
Ruggiero, L., Charitha, D., Xiang, S., Lucia, B.: Investigating pedestrian navigation in indoor open space environments using big data. Applied Mathematical Modelling 62, 499-509 (2018). doi:10.1016/j.apm.2018.06.014
Wolfram, S.: Statistical mechanics of cellular automata. Review of Modern Physics 55, 601-644 (1983). doi:10.1103/RevModPhys.55.601
Seitz, M.J., Köster, G.: How update schemes influence crowd simulations. Journal of Statistical Mechanics: Theory and Experiment 2014(7), P07002 (2014). doi:10.1088/1742-5468/2014/07/P07002
Was, J., Lubaś, R.: Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146, 199-209 (2014). doi:10.1016/j.neucom.2014.04.057
Okazaki, S.: A study of pedestrian movement in architectural space: part 1 pedestrian movement by the application of magnetic models. Transactions of the Architectural Institute of Japan 283, 111-119 (1979). doi:10.3130/aijsaxx.283.0_111
Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 10, 271-288 (2007). doi:10.1142/S0219525907001355
Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010). doi:10.1371/journal.pone.0010047
Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Physical Review E 72, 026112 (2005). doi:10.1103/PhysRevE.72.026112
Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnár-farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339-352 (2005). doi:10.1177/0037549705052772
Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Metaxas, D., Popovic, J. (eds.) ACM SIGGRAPH/Eurographics Symposium on Computer animation (2007)
Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A: Statistical Mechanics and its Applications 388(17), 3600-3608 (2009). doi:10.1016/j.physa.2009.05.027
Kretz, T., Große, A., Hengst, S., Kautzsch, L., Pohlmann, A., Vortisch, P.: Quickest paths in simulations of pedestrians. Advances in Complex Systems 10, 733-759 (2011)
Johansson, F., Duives, D., Daamen, W., Hoogendoorn, S.: The many roles of the relaxation time parameter in force based models of pedestrian dynamics. Transportation Research Procedia 2, 300-308 (2014). doi:10.1016/j.trpro.2014.09.057. The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands
Chraibi, M.: Oscillating behavior within the social force model. arXiv (2014)
Conway, R.W., Johnson, B.M., Maxwell, W.L.: Some problems of digital systems simulation. Management Science 6(1), 92-110 (1959). doi:10.1287/mnsc.6.1.92
Hall, E.T.: The Hidden Dimension. Anchor (1990). URL www.worldcat.org/isbn/0385084765
von Sivers, I.K.M.: Modellierung sozialpsychologischer Faktoren in Personenstromsimulationen - Interpersonale Distanz und soziale Identitäten. Ph.D. thesis, Technische Universität München (2016). URL https://mediatum.ub.tum.de/doc/1303742/1303742.pdf
Zönnchen, B.: Navigation around pedestrian groups and queueing using a dynamic adaption of traveling. Bachelor's thesis, Hochschule München (2013)
Seitz, M.J., Dietrich, F., Köster, G.: The effect of stepping on pedestrian trajectories. Physica A: Statistical Mechanics and its Applications 421, 594-604 (2015). doi:10.1016/j.physa.2014.11.064
Köster, G., Zönnchen, B.: A queuing model based on social attitudes. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow '15, pp. 193-200. Springer International Publishing, Nootdorp, the Netherlands (2016). doi:10.1007/978-3-319-33482-0. 27-30 October 2015
Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21(4), 25-34 (1987). doi:10.1145/37402.37406
Wolinski, D., J. Guy, S., Olivier, A.H., Lin, M., Manocha, D., Pettré, J.: Parameter estimation and comparative evaluation of crowd simulations. Comput. Graph. Forum 33(2), 303-312 (2014). doi:10.1111/cgf.12328
Korhonen, T., Hostikka, S., Heliövaara, S., Ehtamo, H., Matikainen, K.J.: Integration of an agent based evacuation simulation and state-of-the-art fire simulation. In: Proceedings of the 7th Asia-Oceania Symposium on Fire Science & Technology, Hong Kong (2007). URL https://pdfs.semanticscholar.org/5ea1/8b163221a6e736a47a0df9e785efbcf6df64.pdf
Kielar, P.M., Borrmann, A.: Modeling pedestrians' interest in locations: A concept to improve simulations of pedestrian destination choice. Simulation Modelling Practice and Theory 61, 47-62 (2016). doi:10.1016/j.simpat.2015.11.003
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent Development and Applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements 5(3&4), 128-138 (2012)
McGrattan, K., Hostikka, S., McDermott, R., Jason, F., Vanella, M.: Fire Dynamics Simulator User's Guide. National Institute of Standards and Technology and VTT Technical Research Centre of Finland, sixth edition edn. (2019). doi:10.6028/NIST.SP.1019
Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free first order model for pedestrian dynamics. In: Traffic and Granular Flow '15. Nootdorp, the Netherlands (2015). URL https://arxiv.org/abs/1512.05597. 27-30 October 2015
Graf, A.: Automated Routing in Pedestrian Dynamics. Master's thesis, Fachhochschule Aachen (2015). URL http://juser.fz-juelich.de/record/276318
Hanik, F.: The kiss principle. Online: https://people.apache.org/ fhanik/kiss.html (2006). Accessed 05. November 2018
Gipps, P.: The role of computer graphics in validating simulation models. Mathematics and Computers in Simulation 28(4), 285-289 (1986). doi:10.1016/0378-4754(86)90049-2
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA (1994)
Zönnchen, B., Köster, G.: A parallel generator for sparse unstructured meshes to solve the eikonal equation. Journal of Computational Science (2018). doi:10.1016/j.jocs.2018.09.009
Popper, K.: The Logic of Scientific Discovery (1934, 1959). Routledge Classics, London and New York (2002)
JUnit test tool, http://www.junit.org. http://www.junit.org. Accessed: 2018-11-07
ISO: Road vehicles -- Functional safety -- Part 6: Product development at the software level (2018). URL https://www.iso.org/standard/68388.html
RiMEA: Guideline for Microscopic Evacuation Analysis. RiMEA e.V., 3.0.0 edn. (2016). URL http://www.rimea.de/
Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. Journal of Statistical Mechanics: Theory and Experiment 2011(06), P06004 (2011). doi:10.1088/1742-5468/2011/06/P06004
GitLab Contributors: GitLab. Online: https://about.gitlab.com/ (2018). Accessed 26. October 2018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Benedikt Kleinmeier, Benedikt Zönnchen, Marion Gödel, Gerta Köster
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).