Network Simulation for Pedestrian Flows with HyDEFS

Authors

  • Kathrin Klamroth IMACM, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
  • Bruno Lang IMACM, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
  • Armin Seyfried School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal, Germany and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany https://orcid.org/0000-0001-8888-0978
  • Michael Stiglmayr IMACM, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

DOI:

https://doi.org/10.17815/CD.2020.24

Keywords:

pedestrians, event-driven simulation software, varying routing, macroscopic

Abstract

The reliable simulation of pedestrian movement is an essential tool for the security aware design and analysis of buildings and infrastructure. We developed HyDEFS, an event-driven dynamic flow simulation software which is designed to simulate pedestrian movement depending on varying routing decisions of the individual users and varying constraints. HyDEFS uses given density depending velocities to model congestions and evaluates flow distributions with respect to average and maximum travel time. This is of particular importance when considering evacuation scenarios. 

We apply HyDEFS on two small networks and cross validate its results by time-discrete and time-continuous calculations.

References

Predtechenskii, V.M., Milinskii, A.I.: Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Delhi (1978). Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow, 1969

DiNenno, P.J.: SFPE Handbook of Fire Protection Engineering, 3 edn. National Fire Protection Association, Quincy MA (2002)

Buchmueller, S., Weidmann, U.: Parameters of pedestrinas, pedestrian traffic and walking facilities. Tech. Rep. Schriftenreihe 132, ETH, Eidgenössische Technische Hochschule Zürich (2007)

Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A.: Modelling of Pedestrian and Evacuation Dynamics, pp. 1-22. Springer, Berlin, Heidelberg (2018)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269-271 (1959). doi:10.1007/BF01386390

Kretz, T.: Pedestrian traffic: On the quickest path. Journal of Statistical Mechanics: Theory and Experiment P03012 (2009). doi:10.1088/1742-5468/2009/03/P03012

Kemloh Wagoum, A.U., Seyfried, A., Holl, S.: Modeling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Advances in Complex Systems 15(3) (2012). doi:10.1142/S0219525912500294

Kneidl, A.: Methoden zur Abbildung menschlichen Navigationsverhaltens bei der Modellierung von Fußgängerströmen. Dissertation, Technische Universität München (2013)

Kielar, P.M., Biedermann, D.H., Kneidl, A., Borrmann, A.: A unified pedestrian routing model combining multiple graph-based navigation methods. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow '15, pp. 241-248. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-33482-0_31

Filippidis, L.: Representing the influence of signage on evacuation behavior within an evacuation model. Journal of Fire Protection Engineering 16(1), 37-73 (2006). doi:10.1177/1042391506054298

Nassar, K.: Sign visibility for pedestrians assessed with agent-based simulation. Transportation Research Record: Journal of the Transportation Research Board 2264, 18-26 (2011). doi:10.3141/2264-03

Kretz, T., Große, A., Hengst, S., Kautzsch, L., Pohlmann, A., Vortisch, P.: Quickest paths in simulations of pedestrians. Advances in Complex Systems 14(5), 733-759 (2011). doi:10.1142/S0219525911003281

Andresen, E., Chraibi, M., Seyfried, A.: A representation of partial spatial knowledge: a cognitive map approach for evacuation simulations. Transportmetrica A: Transport Science (2018). doi:10.1080/23249935.2018.1432717

Piccoli, B., Garavello, M.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield, MO (2006)

Garavello, M., Han, K., Piccoli, B.: Models for Vehicular Traffic on Networks. American Institute of Mathematical Sciences, Springfield, MO (2016)

Göttlich, S., Kühn, S., Ohst, J.P., Ruzika, S.: Evacuation dynamics influenced by spreading hazardous material. Networks and Heterogeneous Media 6, 443 (2011). doi:10.3934/nhm.2011.6.443

Göttlich, S., Kühn, S., Ohst, J.P., Ruzika, S.: Evacuation modeling: a case study on linear and nonlinear network flow models. EURO Journal on Computational Optimization 4(3), 219-239 (2016)

Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87-D(3), 726-732 (2004)

Kimms, A., Maassen, K.C.: A fast heuristic approach for large-scale cell-transmission-based evacuation route planning. Networks 60(3), 179-193 (2012). doi:10.1002/net.21457

Rausch, M., Treiber, M., Lämmer, S.: A microscopic decision model for route choice and event-driven revisions. arXiv e-print 1805.05076 (2018). URL https://arxiv.org/abs/1811.11295

Scellato, S., Fortuna, L., Frasca, M., Gómez-Garde nes, J., Latora, V.: Traffic optimization in transport networks based on local routing. Eur. Phys. J. B 73(2), 303-308 (2010). doi:10.1140/epjb/e2009-00438-2

Sun, H.J., Wu, J.J., Gao, Z.Y.: Dynamics of routing mechanisms on traffic networks. Int. J. Mod. Phys. C 18(11), 1775-1782 (2007). doi:10.1142/S012918310701173X

Danila, B., Sun, Y., Bassler, K.E.: Collectively optimal routing for congested traffic limited by link capacity. Phys. Rev. E 80(6), 066116 (2009). doi:10.1103/PhysRevE.80.066116

Ezaki, T., Yanagisawa, D., Nishinari, K.: Pedestrian flow through multiple bottlenecks. Phys. Rev. E 86, 026118 (2012). doi:10.1103/PhysRevE.86.026118

Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally asymmetric exclusion processes. Phys. Rev. E 94, 062312 (2016). doi:10.1103/PhysRevE.94.062312

Bittihn, S., Schadschneider, A.: Braess paradox in a network with stochastic dynamics and fixed strategies. Physica A: Statistical Mechanics and its Applications 507, 133 - 152 (2018). doi:10.1016/j.physa.2018.05.018

Selten, R., Chmura, T., Pitz, T., Kube, S., Schreckenberg, M.: Commuters route choice behaviour. Games and Economic Behavior 58(2), 394-406 (2007). doi:10.1016/j.geb.2006.03.012

Rapoport, A., Kugler, T., Dugar, S., Gisches, E.: Choice of routes in congested traffic networks: Experimental tests of the Braess paradox. Games and Economic Behavior 65(2), 538-571 (2009). doi:10.1016/j.geb.2008.02.007

Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258-268 (1968)

Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transportation Science 39, 446-450 (2005)

Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Mathematics of Operations Research 34(2), 499-512 (2009). URL http://www.jstor.org/stable/40538395

Downloads

Published

08.03.2020

How to Cite

Klamroth, K., Lang, B., Seyfried, A., & Stiglmayr, M. (2020). Network Simulation for Pedestrian Flows with HyDEFS. Collective Dynamics, 5, 1–16. https://doi.org/10.17815/CD.2020.24

Issue

Section

Articles