Unidirectional and bidirectional flow in a narrow corridor with body rotation
DOI:
https://doi.org/10.17815/CD.2020.37Keywords:
collision avoidance, body rotation, fundamental diagram, unidirectional, bidirectionalAbstract
In this paper, we developed a new pedestrian model, where pedestrians are represented with three circles and rotate their body to avoid others. In most pedestrian models, the body posture of pedestrians is statically connected with the walking direction; however, they may become different in our model, in other words, pedestrians can walk sideways. We conducted simulation on bidirectional flow in a narrow corridor where body rotation is necessary to avoid collisions and succeeded to reproduce realistic fundamental diagram.References
A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic transport in complex systems: from
molecules to vehicles, Elsevier, 2010.
A. Jelić, C. Appert-Rolland, S. Lemercier, J. Pettré, “Properties of pedestrians walking in line:
Fundamental diagrams”, Phys. Rev. E, vol. 85, no. 3, 036111, 2012.
J. Zhang, W. Mehner, S. Holl, M. Boltes, E. Andresen, A. Schadschneider, A. Seyfried, “Universal
flow-density relation of single-file bicycle, pedestrian and car motion”, Physics Letters A, vol. 378,
no. 44, pp. 3274-3277, 2014.
S. Holl, “Methoden für die Bemessung der Leistungsfähigkeit multidirektional genutzter
Fußverkehrsanlagen”, Universität Wuppertal, 2016
S. Cao, A. Seyfried, J. Zhang,S. Holl, W. Song,, “Fundamental diagrams for multidirectional
pedestrian flows”, J. Stat. Mech., vo. 2017, no. 3, 033404, 2017.
Forschungszentrum Jülich, “Data archive of experimental data from studies about pedestrian
dynamics”, http://ped.fz-juelich.de/db/ (accessed May, 2018).
D. Helbing, P. Molnár, “Social force model for pedestrian dynamics”, Phys. Rev. E, vol. 51, no. 5, pp.
–4286, 1995.
V. J. Blue, J. L. Adler, “Cellular automata microsimulation for modeling bi-directional pedestrian
walkways”, Transp. Res. Part. B Meth., vol. 35, no. 3, pp. 293-312, 2001.
C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, “Simulation of pedestrian dynamics using a
two-dimensional cellular automaton”, Physica A vol. 295, pp. 507–525, 2001.
J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, “Ordering in bidirectional pedestrian flows
and its influence on the fundamental diagram”, J. Stat. Mech., vol. 2012, no. 2, P02002, 2012.
C. Feliciani, K. Nishinari, “Empirical analysis of the lane formation process in bidirectional
pedestrian flow”, Phys. Rev. E, vol. 94, no. 3, 032304, 2016.
C. Feliciani, K. Nishinari, “An improved Cellular Automata model to simulate the behavior of high
density crowd and validation by experimental data”, Physica A, vol. 451, pp. 135-148, 2016.
W. G. Weng, T. Chen, H. Y. Yuan, W. C. Fan, “Cellular automaton simulation of pedestrian counter
flow with different walk velocities”, Phys. Rev. E, vol. 74, no. 3, 036102, 2006.
S. Nowak, A. Schadschneider, “Quantitative analysis of pedestrian counterflow in a cellular
automaton model”, Phys. Rev. E, vol. 85, no. 6, 066128, 2012.
G. Flötteröd, G. Lämmel, “Bidirectional pedestrian fundamental diagram”, Transp. Res. Part. B
Meth., vol. 71, pp. 194-212, 2015.
C. Feliciani, K. Nishinari, “Pedestrians rotation measurement in bidirectional streams”, in
International Conference on Pedestrian and Evacuation Dynamics 2016, W. Song, J. Ma, L. Fu,
USTC Press, 2016, pp. 76-83.
H. Yamamoto, D. Yanagisawa, C. Feliciani, K. Nishinari, “Body-rotation behavior of pedestrians for
collision avoidance in passing and cross flow”, Transp. Res. Part B Meth, vol. 122, pp. 486–510,
J. Wąs, B. Gudowski,P. J. Matuszyk, “Social Distances Model of Pedestrian Dynamics”, Lecture
Notes in Computer Science (Cellular Automata), vol. 4173, pp. 492–501, 2006.
M. Chraibi, A. Seyfried, A. Schadschneider, “Generalized centrifugal-force model for pedestrian
dynamics”, Phys. Rev. E, vol. 82, no. 4, 046111, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Daichi Yanagisawa, Claudio Feliciani, Katsuhiro Nishinari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).