Pedestrian collision avoidance with a local dynamic goal

Authors

  • Rafael Martin Instituto Tecnológico de Buenos Aires, C. A. de Buenos Aires, Argentina
  • Daniel Parisi Instituto Tecnológico de Buenos Aires, C. A. de Buenos Aires, Argentina and Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

DOI:

https://doi.org/10.17815/CD.2020.66

Keywords:

pedestrian simulation, steering, navigation, collision avoidance

Abstract

We present here a general formalism for equipping simulated pedestrians with an avoidance mechanism. The central idea is to use a short-range target which is adjusted dynamically depending on the environment and thus modulating the desired velocity of the agent. This formulation can be implemented over any type of existing pedestrian model, being force-based or rule-based. As an example, we implement a simple instance of the formulation which is adjusted to reproduce previous reported and available experimental data of collision avoidance in scenarios of low density. The proposed minimal model shows good agreement with the real trajectories and other macroscopic observables.

References

Helbing, D. and Molnar, P., "Social force model for pedestrian dynamics". Physical review E, vol. 51(5), pp. 4282, 1995.

Helbing, D., Farkas, I. and Vicsek, T., "Simulating dynamical features of escape panic". Nature, vol. 407, no. 6803, pp.487, 2000.

Lakoba, T.I., Kaup, D.J. and Finkelstein, N.M., "Modifications of the Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolution". Simulation, vol. 81, no. 5, pp. 339-352, 2005.

Parisi, D.R., Gilman, M. and Moldovan, H., "A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions". Physica A: Statistical Mechanics and its Applications, vol. 388, no. 17, pp. 3600-3608, 2009.

Karamouzas, I., Heil, P., Van Beek, P. and Overmars, M.H., "A predictive collision avoidance model for pedestrian simulation". In International Workshop on Motion in Games (pp. 41-52). Springer, Berlin, Heidelberg, Nov., 2009.

S. Shin, J. Suh, and H. Yeo, “Development of ecm-based microscopic pedestrian movement model,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 249–254, IEEE, 2013.

H. Xi, S. Lee, and Y.-J. Son, “An integrated pedestrian behavior model based on extended decision field theory and social force model,” in Human-in-the-Loop Simulations, pp. 69–95, Springer, 2011.

Baglietto, G. and Parisi, D.R., "Continuous-space automaton model for pedestrian dynamics". Physical Review E, vol. 83, no. 5, pp. 056117, 2011.

Qian-Ling, W., Yao, C., Hai-Rong, D., Min, Z. and Bin, N., “A new collision avoidance model for pedestrian dynamics”. Chinese Physics B, vol. 24, no. 3, pp. 038901, 2015.

Parisi, D.R., Negri, P.A. and Bruno, L., "Experimental characterization of collision avoidance in pedestrian dynamics". Physical Review E, vol. 94, no. 2, pp. 022318, 2016.

Moussaïd, M., Helbing, D. and Theraulaz, G., “How simple rules determine pedestrian behavior and crowd disasters”. Proceedings of the National Academy of Sciences, vol. 108, no. 17, pp.6884-6888, 2011.

S. J. Guy, S. Curtis, M. C. Lin, and D. Manocha, “Least-effort trajectories lead to emergent crowd behaviors,” Physical review E, vol. 85, no. 1, p. 016110, 2012.

W. Qian-Ling, C. Yao, D. Hai-Rong, Z. Min, and N. Bin, “A new collision avoidance model for pedestrian dynamics" Chinese Physics B, vol. 24, no. 3, p. 038901, 2015.

M. J. Seitz, N. W. Bode, and G. Köster, “How cognitive heuristics can explain social interactions in spatial movement," Journal of The Royal Society Interface, vol. 13, no. 121, p. 20160439, 2016.

Seitz, M.J., Bode, N.W. and Köster, G., “How cognitive heuristics can explain social interactions in spatial movement”. Journal of the Royal Society Interface, vol. 13, no. 121, pp. 20160439, 2016.

http://ped.fz-juelich.de/extdb

Downloads

Published

27.03.2020

How to Cite

Martin, R., & Parisi, D. (2020). Pedestrian collision avoidance with a local dynamic goal. Collective Dynamics, 5, 324–331. https://doi.org/10.17815/CD.2020.66

Issue

Section

Proceedings of Pedestrian and Evacuation Dynamics 2018