Impact of Synchronised Flow in Oversaturated City Traffic on Energy Efficiency of Conventional and Electrical Vehicles

Authors

  • Peter Hemmerle Daimler AG, Sindelfingen, Germany
  • Micha Koller Daimler AG, Sindelfingen, Germany
  • Gerhard Hermanns Universität Duisburg-Essen, Physik von Transport und Verkehr, Duisburg, Germany
  • Hubert Rehborn Daimler AG, Sindelfingen, Germany
  • Boris S. Kerner Universität Duisburg-Essen, Physik von Transport und Verkehr, Duisburg, Germany
  • Michael Schreckenberg Universität Duisburg-Essen, Physik von Transport und Verkehr, Duisburg, Germany

DOI:

https://doi.org/10.17815/CD.2016.7

Keywords:

vehicles, city traffic, empirical traffic patterns, synchronised flow, energy efficiency

Abstract

In this study of city traffic, we show that empirical synchronised flow patterns, which have been revealed recently in oversaturated traffic, exhibit considerable impact on the energy efficiency of vehicles. In particular, we have found out that energy consumption in oversaturated city traffic can decrease considerably when the oversaturated city traffic consists of synchronised flow patterns rather than consisting of moving queues of the classical traffic flow theory at traffic signals. Using empirical GNSS data measured by navigation devices on two different road sections in Düsseldorf, Germany, we show that synchronised flow patterns and moving queues differ in their cumulated vehicle acceleration (a sum of positive speed differences along a vehicle trajectory) despite similar mean speeds. Energy efficiency in return is dependent on the cumulated vehicle acceleration. We consider both the fuel consumption of conventional vehicles with combustion engines and the energy balance of electrical vehicles.

References

Webster, F.V.: Traffic Signal Settings. Tech. rep., Road Research Laboratory Technical Paper No. 39 (1958)

Newell, G.F.: Queues for a fixed-cycle traffic light. The Annals of Mathematical Statistics 31(3), 589-597 (1960)

Morgan, J.T., Little, J.D.C.: Synchronizing traffic signals for maximal bandwidth. Operations Research 12(6), 896-912 (1964)

Newell, G.F.: Approximation methods for queues with application to the fixed-cycle traffic light. Siam Review 7(2), 223-240 (1965)

Little, J.D.C.: The synchronization of traffic signals by mixed-integer linear programming. Operations Research 14(4), 568-594 (1966)

Grafton, R.B., Newell, G.F.: Optimal policies for the control of an undersaturated intersection. In: R. Herman, R. Rothery (eds.) Vehicular Traffic Science, pp. 239-257. Elsevier, New York (1967)

Robertson, D.I.: TRANSYT: a traffic network study tool. Transport and Road Research Laboratory Report LR 253. Tech. rep., Crowthorne: TRL (1969)

Robertson, D.I.: Traffic models and optimum strategies of control: a review. In: Proceedings of the International Symposium on Traffic Control Systems, pp. 262-288 (1979)

Stephanopoulos, G., Michalopoulos, P.G.: Modelling and analysis of traffic queue dynamics at signalized intersections. Transportation Research Part A: General 13(5), 295-307 (1979)

Michalopoulos, P.G., Stephanopoulos, G., Pisharody, V.: Modeling of traffic flow at signalized links. Transportation Science 14(1), 9-41 (1980)

Michalopoulos, P.G., Pisharody, V.: Platoon dynamics on signal controlled arterials. Transportation Science 14(4), 365-396 (1980)

Michalopoulos, P.G., Stephanopoulos, G., Stephanopoulos, G.: An application of shock wave theory to traffic signal control. Transportation Research Part B: Methodological 15(1), 35-51 (1981)

Hunt, P.B., Robertson, D.I., Bretherton, R., Winton, R.: SCOOT-a traffic responsive method of coordinating signals. Transport and Road Research Laboratory Report LR 1014 (1981)

Newell, G.F.: Applications of Queueing Theory. Chapman and Hall, London (1982)

Gartner, N.H.: OPAC: A demand-responsive strategy for traffic signal control. Transportation Research Record 906, 75-81 (1983)

McShane, W.R., Roess, R.P.: Traffic Engineering. Prentice Hall, Englewood Cliffs, NJ (1990)

Dion, F., Rakha, H., Kang, Y.S.: Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological 38(2), 99-122 (2004). doi:10.1016/S0191-2615(03)00003-1

Gartner, N.H., Stamatiadis, C.: Traffic Networks, Optimization and Control of Urban. In: Meyers R. A. (Ed.): Encyclopedia of Complexity and System Science, Springer, pp. 9470-9500 (2009)

Geroliminis, N., Skabardonis, A.: Identification and analysis of queue spillovers in city street networks. IEEE Transactions on Intelligent Transportation Systems 12(4), 1107-1115 (2011). doi:10.1109/TITS.2011.2141991

Treiber, M., Kesting, A.: Traffic flow dynamics: Data, Models and Simulation. Springer-Verlag Berlin-Heidelberg (2013)

Elefteriadou, L.: An introduction to traffic flow theory. Springer, New York (2014)

Kerner, B.S.: The Physics of Traffic. Springer, Berlin, New York (2004)

Kerner, B.S.: Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory. Springer, Berlin, New York (2009)

Kerner, B.S.: Experimental features of self-organization in traffic flow. Physical Review Letters 81(17), 3797 (1998)

Kerner, B.S.: Congested traffic flow: observations and theory. Transportation Research Record: Journal of the Transportation Research Board 1678(1), 160-167 (1999)

Kerner, B.S.: The physics of traffic. Physics World 12(8), 25-30 (1999)

Kerner, B.S.: Physics of traffic gridlock in a city. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 84(4), 045102 (2011)

Kerner, B.S.: Theory of self-organized traffic at light signal. Tech. rep. (2012)

Kerner, B.S.: The physics of green-wave breakdown in a city. EPL (Europhysics Letters) 102(2), 28010 (2013). doi:10.1209/0295-5075/102/28010

Kerner, B.S.: Three-phase theory of city traffic: Moving synchronized flow patterns in under-saturated city traffic at signals. Physica A: Statistical Mechanics and its Applications 397, 76-110 (2014). doi:10.1016/j.physa.2013.11.009

Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic. Journal of Statistical Mechanics: Theory and Experiment 2014(3), P03001 (2014). doi:10.1088/1742-5468/2014/03/P03001

Kerner, B.S., Klenov, S.L., Hermanns, G., Hemmerle, P., Rehborn, H., Schreckenberg, M.: Synchronized flow in oversaturated city traffic. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 88(5), 054801 (2013). doi:10.1103/PhysRevE.88.054801

Kerner, B.S., Hemmerle, P., Koller, M., Hermanns, G., Klenov, S.L., Rehborn, H., Schreckenberg, M.: Empirical synchronized flow in oversaturated city traffic. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 90(3), 032810 (2014). doi:10.1103/PhysRevE.00.002800

Hemmerle, P., Koller, M., Rehborn, H., Kerner, B.S., Schreckenberg, M.: Fuel consumption in empirical synchronised flow in urban traffic. IET Intelligent Transport Systems (2015). doi:10.1049/iet-its.2015.0014

Geroliminis, N., Kuwahara, M.: The use of telematics to monitor traffic in urban areas: theory and applications. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC pp. 748-753 (2008). doi:10.1109/ITSC.2008.4732526

Chow, A.H.F., Santacreu, A., Tsapakis, I., Tanasaranond, G.: Empirical assessment of urban traffic congestion. Journal of Advanced Transportation 48(8), 1000--1016 (2014). doi:10.1002/atr

Döge, K.P.: Ein Beitrag zur videobasierten Verkehrszustandsidentifikation: Automatische Stauerkennung anhand von Live-Kamera-Bildern des Straßenverkehrs. Ph.D. thesis, Technische Universität Dresden (2004)

Kerner, B.S.: A theory of traffic congestion at heavy bottlenecks. Journal of Physics A: Mathematical and General 41(21) (2008). doi:10.1088/1751-8113/41/21/215101

Jun, J., Guensler, R., Ogle, J.: Smoothing methods to minimize impact of global positioning system random error on travel distance, speed, and acceleration profile estimates. Transportation Research Record: Journal of the Transportation Research Board (1972), 141-150 (2006)

Kerner, B.S.: Cumulated vehicle acceleration. Traffic Engineering and Control 55(4), 139 - 141 (2014)

Watson, H.C.: Effects of a wide range of drive cycles on the emissions from vehicles of three levels of technology. Tech. rep., No. 950221. SAE Technical Paper (1995)

Koller, M., Hemmerle, P., Rehborn, H., Hermanns, G., Kerner, B.S., Schreckenberg, M.: Increased Consumption in Synchronized Flow in Oversaturated City Traffic. In: 10th ITS European Congress, Helsinki, Proceedings (2014)

Koller, M., Hemmerle, P., Rehborn, H., Kerner, B.S.: Traffic Phase Dependent Fuel Consumption. In: Proc. 11th Conference on Traffic and Granular Flow. Nootdorp, the Netherlands (2015)

Koller, M., Hemmerle, P., Rehborn, H., Kerner, B.S., Schreckenberg, M., Hermanns, G.: Mehrverbrauch im gestauten Stadtverkehr. Straßenverkehrstechnik 59(12), 820-824 (2015)

Koller, M.: Kraftstoffmehrverbrauch auf Basis dynamischer Verkehrslagen. Ph.D. thesis, Eberhard Karls Universität Tübingen (2015)

Akcelik, R.: Progress in Fuel Consumption Modelling for Urban Traffic Management. Tech. rep., Australian Road Research Board (1983)

Kerner, B.S., Klenov, S.L.: A microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Phys. Rev. E 68(3), 036130 (2003)

Kerner, B.S., Klenov, S.L.: A microscopic model for phase transitions in traffic flow. Journal of Physics A: Mathematical and General 35(3), L31-L43 (2002)

Kerner, B.S., Klenov, S.L.: Spatial–temporal patterns in heterogeneous traffic flow with a variety of driver behavioural characteristics and vehicle parameters. Journal of Physics A: Mathematical and General 37(37), 8753-8788 (2004)

Kerner, B.S., Klenov, S.L.: Phase transitions in traffic flow on multilane roads. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80(5), 056101 (2009)

Kerner, B.S., Klenov, S.L.: A theory of traffic congestion at moving bottlenecks. Journal of Physics A: Mathematical and Theoretical 43(42), 425101 (2010)

Hermanns, G., Hemmerle, P., Rehborn, H., Koller, M., Kerner, B.S., Schreckenberg, M.: Microscopic Simulation of Synchronized Flow in Oversaturated City Traffic: Effect of Driver’s Speed Adaptation. Transportation Research Record: Journal of the Transportation Research Board 2490, 47-55 (2015)

Nesamani, K.S., Chu, L.Y., McNally, M.G., Jayakrishnan, R.: Estimation of Vehicular Emissions by Capturing Traffic Variations. Atmospheric Environment 41(14), 2996-3008 (2007)

Barth, M., Boriboonsomsin, K.: Real-world CO2 impacts of traffic congestion. Transportation Research Record: Journal of the Transportation Research Board 2058, 163-171 (2008)

Boriboonsomsin, K., Barth, M., Zhu, W., Vu, A.: ECO-Routing Navigation System based on Multi- Source Historical and Real-Time Traffic Information. IEEE Transactions on Intelligent Transportation Systems 13(4), 1694--1704 (2012)

Barth, M., Boriboonsomsin, K.: Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment 14(6), 400--410 (2009)

Abousleiman, R., Rawashdeh, O.: Electric vehicle modelling and energy-efficient routing using particle swarm optimisation. IET Intelligent Transport Systems (2015). doi:10.1049/iet-its.2014.0177

Ur:ban - urbaner raum: Benutzergerechte assistenzsysteme und netzmanagement (urban space: User oriented assistance systems and network management). URL http://urban-online.org/de/urban.html

Downloads

Published

23.11.2016

How to Cite

Hemmerle, P., Koller, M., Hermanns, G., Rehborn, H., Kerner, B. S., & Schreckenberg, M. (2016). Impact of Synchronised Flow in Oversaturated City Traffic on Energy Efficiency of Conventional and Electrical Vehicles. Collective Dynamics, 1, 1–27. https://doi.org/10.17815/CD.2016.7

Issue

Section

Special section on: "Traffic Flow: data, theory, model, solution"