Noise-Induced Stop-and-Go Dynamics in Pedestrian Single-file Motion

Andreas Schadschneider, Antoine Tordeux


Stop-and-go waves are a common feature of vehicular traffic and have also been observed in pedestrian flows. Usually the occurrence of this self-organization phenomenon is related to an inertia mechanism. It requires fine-tuning of the parameters and is described by instability and phase transitions. Here, we present a novel explanation for stop-and-go waves in pedestrian dynamics based on stochastic effects. By introducing coloured noise in a stable microscopic inertia-free (i.e. first order) model, pedestrian stop-and-go behaviour can be described realistically without requirement of instability and phase transition. We compare simulation results to empirical pedestrian trajectories and discuss plausible values for the model’s parameters.


pedestrian single-file motion; stop-and-go dynamics; first-order microscopic models; coloured noise; simulation

Full Text:



Herman, R., Montroll, E., Potts, R., Rothery, R.: Traffic dynamics: analysis of stability in carfollowing. Op. Res. 7(1), 86–106 (1959).

Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79, 4030–4033 (1997).

Orosz, G., Wilson, R.E., Szalai, R., Stépán, G.: Exciting traffic jams: Nonlinear phenomena behind traffic jam formation on highways. Phys. Rev. E 80(4), 046,205 (2009).

Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4-6), 199–329 (2000).

Kerner, B.: The Physics of Traffic. Springer (2004).

Zhang, J., Mehner, W., Holl, S., Boltes, M., Andresen, E., Schadschneider, A., Seyfried, A.: Universal flow-density relation of single-file bicycle, pedestrian and car motion. Phys. Lett. A 378(44), 3274– 3277 (2014).

Sugiyama, Y., Fukui, M., Kikushi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.: Traffic jams without bottlenecks. Experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033,001 (2008).

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995).

Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81, 3042–3045 (1998).

Colombo, R.: Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63(2), 708–721 (2003).

Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok, A., Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (1994).

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

Bussemaker, H., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78, 5018–5021 (1997).

Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312, 1402–1406 (2006).

Hermann, G., Touboul, J.: Heterogeneous connections induce oscillations in large-scale networks. Phys. Rev. Lett. 109, 018,702 (2012).

Muramatsu, M., Nagatani, T.: Soliton and kink jams in traffic flow with open boundaries. Phys. Rev. E 60, 180–187 (1999).

Tomer, E., Safonov, L., Havlin, S.: Presence of many stable nonhomogeneous states in an inertial car-following model. Phys. Rev. Lett. 84, 382–385 (2000).

Treiber, M., Kesting, A., Helbing, D.: Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transport. Res. B: Meth. 44(89), 983– 1000 (2010).

Portz, A., Seyfried, A.: Modeling Stop-and-Go Waves in Pedestrian Dynamics. . In: Lect. Notes Comp. Sci., vol. 6068, pp. 561–568 (2010).

Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011).

Kuang, H., Fan, Y., Li, X., Kong, L.: Asymmetric effect and stop-and-go waves on single-file pedestrian dynamics. Procedia Eng. 31, 1060 – 1065 (2012).

Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettr, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31(2pt2), 489–498 (2012).

Seyfried, A., Portz, A., Schadschneider, A.: Phase coexistence in congested states of pedestrian dynamics. In: Lect. Notes Comp. Sci., vol. 6350, pp. 496–505 (2010).

Hänggi, P., Jung, P.: Colored Noise in Dynamical Systems, pp. 239–326. John Wiley & Sons, Inc. (2007).

Helbing, D., Farkas, I., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84(6), 1240–1243 (2000).

Arnold, L., Horsthemke, W., Lefever, R.: White and coloured external noise and transition phenomena in nonlinear systems. Z. Phys. B 29(4), 367–373 (1978).

Castro, F., Sánchez, A.D., Wio, H.S.: Reentrance phenomena in noise induced transitions. Phys. Rev. Lett. 75, 1691–1694 (1995).

Gilden, D., Thornton, T., Mallon, M.: 1/f noise in human cognition. Science 267(5205), 1837–1839 (1995).

Zgonnikov, A., Lubashevsky, I., Kanemoto, S., Miyazawa, T., Suzuki, T.: To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing. J. R. Soc. Interface 11(99) (2014).

Williams, R., Herrup, K.: The control of neuron number. Annu. Rev. Neurosci. 11(1), 423–453 (1988).

Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995).

Takayasu, M., Takayasu, H.: 1/f noise in a traffic model. Fractals 01(04), 860–866 (1993).

Wagner, P.: How human drivers control their vehicle. Eur. Phys. J. B 52(3), 427–431 (2006).

Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Phys. A 360(1), 71–88 (2006).

Hamdar, S., Mahmassani, H., Treiber, M.: From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers cognitive and safety parameters in a risk-taking environment. Transp. Res. B-Meth. 78, 32 – 53 (2015).

Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A 49(18), 185,101 (2016).

Lindgren, G., Rootzen, H., Sandsten, M.: Stationary Stochastic Processes for Scientists and Engineers. Taylor & Francis (2013).

Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017,101 (2001).

Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Phys. Rev. E 90, 042,812 (2014).


Copyright (c) 2020 Andreas Schadschneider, Antoine Tordeux

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.