Cover Image

Cellular Automata Intersection Model

Tim Peter Erich Vranken, Michael Schreckenberg

Abstract


This paper introduces a cellular automaton design of intersections and defines rules to model traffic flow through them, so that urban traffic can be simulated. The model is able to simulate an intersection of up to four streets crossing. Each street can have a variable number of lanes. Furthermore, each lane can serve multiple purposes at the same time, like allowing vehicles to keep going straight or turn left and/or right. The model also allows the simulation of intersections with or without traffic lights and slip lanes. A comparison to multiple empirical intersection traffic data shows that the model is able to realistically reproduce traffic flow through an intersection. In particular, car following times in free flow and the required time value for drivers that turn within the intersection or go straight through it are reproduced. At the same time, important empirical jam characteristics are retained.

Keywords


celular automata; urban traffic; vehicles; microscopic; models

Full Text:

PDF

References


Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic. Journal of Statistical Mechanics: Theory and Experiment 2014(3), P03001 (2014). doi:10.1088/1742-5468/2014/03/p03001

Li, H., Li, S., Li, H., Qin, L., Li, S., Zhang, Z.: Modeling left-turn driving behavior at signalized intersections with mixed traffic conditions. Mathematical Problems in Engineering 2016(1), 1-11 (2016). doi:10.1155/2016/4015271

Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: A cellular automata approach. IEEE Communications Magazine 47(5), 142-150 (2009). doi:10.1109/MCOM.2009.4939290

Chopard, B., Luthi, P.O., Queloz, P.A.: Cellular automata model of car traffic in a two-dimensional street network. Journal of Physics A: Mathematical and General 29(10), 2325-2336 (1996). doi:10.1088/0305-4470/29/10/012

Bai, F., Sadagopan, N., Helmy, A.: The important framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Ad Hoc Networks 1(4), 383-403 (2003). doi:10.1016/S1570-8705(03)00040-4

Nagel, K., Stretz, P., Pieck, M., Donnelly, R., Barrett, C.L.: Transims traffic flow characteristics (1997). URL https://arxiv.org/pdf/adap-org/9710003

Krautter, W., Bleile, T., Manstetten, D., Schwab, T.: Traffic simulation with artist. In: Proceedings of Conference on Intelligent Transportation Systems, pp. 472-477 (1997). doi:10.1109/ITSC.1997.660520

Robertson, I.: TRANSYT: a traffic network study tool. Road Research Laboratory Report LR 253 (1969)

Zhao, H.T., Yang, S., Chen, X.X.: Cellular automata model for urban road traffic flow considering pedestrian crossing street. Physica A: Statistical Mechanics and its Applications 462, 1301-1313 (2016). doi:10.1016/j.physa.2016.06.146

van Aerde, M., Hellinga, B.R., Baker, M.R., Rakha, H.A.: Integration : An overview of traffic simulation features. In: Transportation Research Board Annual Meeting, pp. 1-14 (1996). URL https://pdfs.semanticscholar.org/5ba0/8ab26cdaa90ad0eb7c37a71b7146622096c6.pdf

Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E 64(5 Pt 2), 056132 (2001). doi:10.1103/PhysRevE.64.056132

Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I 2(12), 2221-2229 (1992). doi:10.1051/jp1:1992277

Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. Journal of Physics A: Mathematical and General 33(48), L477-L485 (2000). doi:10.1088/0305-4470/33/48/103

Esser, J.: Simulation von Stadtverkehr auf der Basis zellularer Automaten. Dissertation, Gerhard-Mercator-Universität-Gesamthochschule Duisburg, Duisburg (1997)

Vasic, J., Ruskin, H.J.: A cellular automata-based network model for heterogeneous traffic: Intersections, turns and their connection. In: Sirakoulis, G.C., Bandini, S. (eds.) Cellular automata, Lecture Notes in Computer Science, vol. 7495, pp. 835-844. Springer, Berlin (2012). doi:10.1007/978-3-642-33350-7_87

Zhao, H.T., Liu, X.R., Chen, X.X., Lu, J.C.: Cellular automata model for traffic flow at intersections in internet of vehicles. Physica A: Statistical Mechanics and its Applications 494, 40-51 (2018). doi:10.1016/j.physa.2017.11.152

Jin, C.J., Wang, W., Jiang, R., Wang, H.: Cellular automaton simulations of a four-leg intersection with two-phase signalization. International Journal of Modern Physics C 25(03), 1350099 (2014). doi:10.1142/S012918311350099X

Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical restriction versus human overreaction triggering congested traffic states. Physical Review Letters 92(23), 238702 (2004). doi:10.1103/PhysRevLett.92.238702

Kerner, B.S.: Breakdown in Traffic Networks. Springer Berlin Heidelberg, Berlin, Heidelberg (2017). doi:10.1007/978-3-662-54473-0

Pottmeier, A., Thiemann, C., Schadschneider, A., Schreckenberg, M.: Mechanical restriction versus human overreaction: Accident avoidance and two-lane traffic simulations. In: Traffic And Granular Flow, pp. 503-508. Springer (2005). doi:10.1007/978-3-540-47641-2_46

Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Metastable states in cellular automata for traffic flow. The European Physical Journal B 5(3), 793-800 (1998). doi:10.1007/s100510050504

Habel, L., Schreckenberg, M.: Asymmetric lane change rules for a microscopic highway traffic model. In: Cellular automata, Lecture Notes in Computer Science / Theoretical Computer Science and General Issues, vol. 8751, pp. 620-629. Springer (2014). doi:10.1007/978-3-319-11520-7_66

Pottmeier, A.: Realistic cellular automaton model for synchronized two-lane traffic: Simulation, validation, and applications. Dissertation, Universität Duisburg-Essen, Duisburg (18.12.2007)

Sparmann, U.: Spurwechselvorgänge auf zweispurigen BAB-Richtungsfahrbahnen. In: Forschung Straßenbau und Straßenverkehrstechnik 263 (1978)

Krauss, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Physical Review E 55(5), 5597-5602 (1997). doi:10.1103/PhysRevE.55.5597

Krbálek, M., Šleis, J.: Vehicular headways on signalized intersections: theory, models, and reality. Journal of Physics A: Mathematical and General 48(1), 015101 (2015). doi:10.1088/1751-8113/48/1/015101

S. Kerner, B., Rehborn, H.: Experimental features and characteristics of traffic jams. Physical Review E 53(2), R1297-R1300 (1996). doi:10.1103/PhysRevE.53.R1297

Chiabaut, N., Buisson, C., Leclercq, L.: Fundamental diagram estimation through passing rate measurements in congestion. IEEE Transactions on Intelligent Transportation Systems 10(2), 355-359 (2009). doi:10.1109/TITS.2009.2018963

Dervisoglu, G., Gomes, G., Kwon, J., Muralidharan, A., Varaiya, P., Horowitz, R.: Automatic calibration of the fundamental diagram and empirical observations on capacity. Transportation Research Board 88th Annual Meeting p. 15 (2009). URL https://people.eecs.berkeley.edu/~varaiya/papers_ps.dir/trbParameter_Calibration.pdf

Dion, F., Rakha, H., Kang, Y.S.: Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological 38(2), 99-122 (2004). doi:10.1016/S0191-2615(03)00003-1

Greenshields, B.D., Schapiro, D., Ericksen Elroy L.: Traffic Performace At Urban Street Intersections. Bureau Highway Traffic, Yale University, Washington, DC United States (1947)

Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: microscopic description of traffic phases. Physical Review E 65(5 Pt 2), 056133 (2002). doi:10.1103/PhysRevE.65.056133

Gipps, P.G.: A model for the structure of lane-changing decisions. Transportation Research Part B: Methodological 20(5), 403-414 (1986). doi:10.1016/0191-2615(86)90012-3

Hidas, P.: Modelling lane changing and merging in microscopic traffic simulation. Transportation Research Part C: Emerging Technologies 10(5), 351-371 (2002). doi:10.1016/S0968-090X(02)00026-8




DOI: http://dx.doi.org/10.17815/CD.2020.80

Copyright (c) 2020 Tim Peter Erich Vranken, Michael Schreckenberg

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.