Pedestrian Crowd Management Experiments: A Data Guidance Paper

Authors

DOI:

https://doi.org/10.17815/CD.2023.141

Abstract

Understanding pedestrian dynamics and the interaction of pedestrians with their environment is crucial to the safe and comfortable design of pedestrian facilities. Experiments offer the opportunity to explore the influence of individual factors. In the context of the project CroMa (Crowd Management in transport infrastructures), experiments were conducted with about 1000 participants to test various physical and social psychological hypotheses focusing on people's behaviour at railway stations and crowd management measures. The following experiments were performed: i) Train Platform Experiment, ii) Crowd Management Experiment, iii) Single-File Experiment, iv) Personal Space Experiment, v) Boarding and Alighting Experiment, vi) Bottleneck Experiment and vii) Tiny Box Experiment. This paper describes the basic planning and implementation steps, outlines all experiments with parameters, geometries, applied sensor technologies and pre- and post-processing steps. All data can be found in the pedestrian dynamics data archive.

References

CroMa Project: Website CroMa Project. URL https://www.croma-projekt.de/de

CrowdDNA Project: Website CrowdDNA Project. URL https://crowddna.eu/

Forschungszentrum Jülich: Pedestrian dynamics data archive. Pedestrian Dynamics Data Archive (2022). doi:10.34735/ped.da

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Experiment outline and participant statistics for experiments within the CroMa project. Pedestrian Dynamics Data Archive (2022). doi:10.34735/PED.2021.2

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51, 481-491 (2016). doi:10.1016/j.patcog.2015.09.023

Robert Koch Institut: 7-day incidence Germany (2021). URL https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/COVID-19-Trends/COVID-19-Trends.html?__blob=publicationFile#/home

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Train Platform Experiments. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021train_platform

Düsseldorf, F.: Merkblatt der Feuerwehr Düsseldorf - Einschätzen von Personendichten bei Veranstaltungen im Freien (2020). URL https://www.duesseldorf.de/fileadmin/Amt37/feuerwehr/dokudb/37_233/200120_Merkblatt_Feuerwehr_Duesseldorf_Einschaetzen_von_Personendichten_bei_Veranstaltungen.pdf

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Crowd Management Experiment. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021crowd_management

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Oval Experiment: Single File Motion. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021oval

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Personal Space Experiment. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021personal_space

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Boarding and Alighting Experiment. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021boarding_alighting

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Tiny Box Experiment. Pedestrian Dynamics Data Archive (2022). URL https://ped.fz-juelich.de/da/doku.php?id=tiny_box

Forschungszentrum Jülich, Bergische Universität Wuppertal, Ruhr-Universität Bochum: Bottleneck Experiment. Pedestrian Dynamics Data Archive (2022). URL http://ped.fz-juelich.de/da/2021bottleneck

Tentacle Sync GmbH: Tentacle sync E - operating manual v1.0. URL https://tentaclesync.com/files/documents/Tentacle_Sync_E_Operating_Manual_ENG.pdf

Rosendahl Studiotechnik GmbH: Instruction Manual Rosendahl nanosyncs HD. URL https://rosendahl-studiotechnik.com/nanosyncs_hd_20.pdf

Boltes, M., Adrian, J., Boomers, A.K., Brualla, R.M., Graf, A., Häger, P., Hillebrand, D., Kilic, D., Lieberenz, P., Salden, D., Schrödter, T.: PeTrack CroMa (2022-03-01). doi:10.5281/zenodo.6320753

Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing, Special Issue on Behaviours in Video 100, 127-133 (2013). doi:10.1016/j.neucom.2012.01.036

Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, p. 226–231. AAAI Press (1996)

Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS) 42(3), 1-21 (2017)

Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'81, pp. 674-679. Morgan Kaufmann Publishers Inc. (1981)

Lucas, B.D.: Generalized image matching by the method of differences (1984)

Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic extraction of pedestrian trajectories from video recordings. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 43-54. Springer Berlin Heidelberg (2010). doi:10.1007/978-3-642-04504-2_3

Movisens EdaMove4 UserManual: User Manual EdaMove4. URL https://docs.movisens.com/Sensors/EdaMove4/#welcome

Movisens EcgMove4 UserManual: EcgMove 4 | movisens Docs. URL https://docs.movisens.com/Sensors/EcgMove4/

Tekscan PMS5400N: Datasheet: Tekscan Pressure Mapping Sensor 5400N. URL https://www.tekscan.com/sites/default/files/resources/IDL-Pressure-Mapping-Sensor-5400N-Datasheet_0.pdf

Xsensor LX210:50.50.05: Datasheet: Xsensor SENSORS LX210:50.50.05. URL https://www.xsensor.de/wp-content/uploads/2015/11/LX210_50_50_05-2500-Sensoren-508mm-Aufl%C3%B6sung-Gr%C3%B6sse-25x25cm-Messbereich-014-11Ncm2-Anwendung-Sitze_Rollst%C3%BChle.pdf

Xsensor LX210:25.50.05: Datasheet: Xsensor SENSORS LX210:25.50.05. URL https://www.xsensor.de/wp-content/uploads/2016/09/Katalog-Industrie.pdf

Schepers, M., Giuberti, M., Bellusci, G.: Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing (2018). doi:10.13140/RG.2.2.22099.07205

Xsens: MVN User Manual, Revision Z, 20 04 2022. URL https://www.xsens.com/hubfs/MVN_User_Manual.pdf

Boltes, M., Adrian, J., Raytarowski, A.K.: A Hybrid Tracking System of Full-Body Motion Inside Crowds. Sensors 21(6), 2108 (2021-03-17). doi:10.3390/s21062108

HappyOrNot: Smiley terminal – happyornot – feedbacksystem. URL https://www.happy-or-not.com/de/losung/smiley-terminal/

Published

08.05.2023

How to Cite

Boomers, A. K., Boltes, M., Adrian, J., Beermann, M., Chraibi, M., Feldmann, S., … Üsten, E. (2023). Pedestrian Crowd Management Experiments: A Data Guidance Paper. Collective Dynamics, 8, 1–57. https://doi.org/10.17815/CD.2023.141

Issue

Section

Articles