Oppilatio+ - A data and cognitive science based approach to analyze pedestrian flows in networks
DOI:
https://doi.org/10.17815/CD.2016.9Keywords:
pedestrians, crowds, cognitive science, network, data analysis, experimentAbstract
Public transport services are a widespread and environmentally friendly option for mobility. In the majority of cases, passengers of public transport services will have to walk from a subway, train, or bus station to their desired travel destination. In an urban environment with a network of narrow streets, this can lead to crowd congestions during rush hour, due to the fact that passengers tend to arrive in waves. In order to monitor and analyze such crowding behavior, city planners, crowd managers, and organizers of public events must ascertain which routes these pedestrians will take from the respective station to their destination. The Oppilatio+ approach is suitable for solving this problem. It is an easy-to-apply approach to predict way-finding behavior with a minimal set of information. The necessary data includes the schedule of incoming transport vehicles at the stations and the time-stamped count of pedestrians at the respective destinations. Under these conditions, the Oppilatio+ approach is suitable for estimating the distribution of pedestrians on all possible walkways between stations and destinations. This information helps crowd control experts to recognize weak spots in the infrastructure and help event organizers to ensure an undisturbed arrival at their event. We validated our approach using two field experiments. The first one was a field study on a public event, and the second one was a case study for a large Swiss train station.References
Deutsche-Stiftung-Weltbevölkerung: Weltbevölkerungsbericht 2007: Urbanisierung als Chance: das Potenzial wachsender Städte nutzen (2007)
Biedermann, D.H., Dietrich, F., Handel, O., Kielar, P.M., Seitz, M.: Using raspberry pi for scientific video observation of pedestrians during a music festival. Tech. rep., Technische Universität München (2015). doi:10.13140/RG.2.1.4035.4407
Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127 - 133 (2013). doi:10.1016/j.neucom.2012.01.036
Biedermann, D.H., Kielar, P.M., Borrmann, A.: Oppilatio - the forecast of crowd congestions on street networks during public events. Proceedings of the Traffic and Granular Flow Conference 2015
Albiol, A., Naranjo, V., Mora, I.: Real-time high density people counter using morphological tools. In: icpr, p. 4652. IEEE (2000). doi:10.1109/icpr.2000.903002
Ruser, H., Pavlov, V.: People counter based on fusion of reflected light intensities from an infrared sensor array. In: GI Jahrestagung (1), pp. 379-383 (2006)
Hoogendoorn, S., Bovy, P.: Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological 38(2), 169-190 (2004). doi:10.1016/s0191-2615(03)00007-9
Kielar, P.M., Borrmann, A.: Modeling pedestrians’ interest in locations: A concept to improve simulations of pedestrian destination choice. Simulation Modelling Practice and Theory 61, 47-62 (2016). doi:10.1016/j.simpat.2015.11.003
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269-271 (1959). doi:10.1007/bf01386390
Kielar, P.M., Biedermann, D.H., Kneidl, A., Borrmann, A.: A unified pedestrian routing model combining multiple graph-based navigation methods. Proceedings of the Traffic and Granular Flow Conference 2015
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical review E 51(5), 4282 (1995). doi:10.1103/physreve.51.4282
Biedermann, D.H., Kielar, P.M., Handel, O., Borrmann, A.: Towards transitum: A generic framework for multiscale coupling of pedestrian simulation models based on transition zones. Transportation Research Procedia 2, 495-500 (2014). doi:10.1016/j.trpro.2014.09.065
Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Mathematical Methods in the Applied Sciences 28(13), 1553-1567 (2005). doi:10.1002/mma.624
Hartmann, D., Sivers, I.V.: Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media 8(4), 985-1007 (2013). doi:10.3934/nhm.2013.8.985
Sloot, P.M.A., Hoekstra, A.G.: Cellular Automata as a Mesoscopic Approach to Model and Simulate Complex Systems, pp. 518-527. Springer Berlin Heidelberg, Berlin, Heidelberg (2001). doi:10.1007/3-540-45545-0_61
Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35(3), 293-312 (2001). doi:10.1016/s0191-2615(99)00052-1
Biedermann, D.H., Torchiani, C., Kielar, P.M., Willems, D., Handel, O., Ruzika, S., Borrmann, A.: A hybrid and multiscale approach to model and simulate mobility in the context of public events. Transportation Research Procedia (2016)
Ijaz, K., Sohail, S., Hashish, S.: A survey of latest approaches for crowd simulation and modeling using hybrid techniques. In: 17th UKSIMAMSS International Conference on Modelling and Simulation, pp. 111-116 (2015)
Borrmann, A., Kneidl, A., Köster, G., Ruzika, S., Thiemann, M.: Bidirectional coupling of macroscopic and microscopic pedestrian evacuation models. Safety science 50(8), 1695-1703 (2012). doi:10.1016/j.ssci.2011.12.021
Zheng, Y., Jia, B., Li, X.G., Zhu, N.: Evacuation dynamics with fire spreading based on cellular automaton. Physica A: Statistical Mechanics and its Applications 390(18–19), 3147 - 3156 (2011). doi:10.1016/j.physa.2011.04.011
Biedermann, D.H., Kielar, P.M., Aumann, Q., Osorio, C.M., Lai, C.T.W.: Carped – a hybrid and macroscopic traffic and pedestrian simulator. In: Proc. of the 27th Forum Bauinformatik, pp. 228-236 (2015). doi:10.13140/RG.2.1.3665.4562
Weidmann, U.: Transporttechnik der Fußgänger: transporttechnische Eigenschaften des Fußgängerverkehrs, Literaturauswertung. IVT, Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau (1992). doi:10.3929/ethz-a-000687810
Corbetta, A., Meeusen, J., Lee, C.m., Toschi, F.: Continuous measurements of real-life bidirectional pedestrian flows on a wide walkway. arXiv preprint arXiv:1607.02897 (2016)
van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Mathematical Systems Theory 10(1), 99-127 (1976). doi:10.1007/bf01683268
Kneidl, A.: Methoden zur abbildung menschlichen navigationsverhaltens bei der modellierung von fußgängerströmen. Ph.D. thesis, Technische Universität München (2013)
Kuipers, B.: The cognitive map: Could it have been any other way? In: Spatial orientation, pp. 345-359. Springer (1983). doi:10.1007/978-1-4615-9325-6_15
Kneidl, A., Borrmann, A.: How do pedestrians find their way? results of an experimental study with students compared to simulation results. Emergency Evacuation of people from Buildings (2011)
Conroy, R.: Spatial Navigation in Immersive Virtual Environments. Ph.D. thesis, The Faculty of Built Environment, London (2001)
Dalton, R.C.: The secret is to follow your nose route path selection and angularity. Environment and Behavior 35(1), 107-131 (2003). doi:10.1177/0013916502238867
Golledge, R.: Path selection and route preference in human navigation: A progress report. Spatial information theory 988 (1995). doi:10.1007/3-540-60392-1_14
Long, L.L., Srinivasan, M.: Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. Journal of The Royal Society Interface 10(81), 20120980 (2013). doi:10.1098/rsif.2012.0980
Wade, L.: Are we built to be lazy? http://www.sciencemag.org/news/2013/01/are-we-built-be-lazy (2013). Web: 04 August 2016
Armeni, I., Chorianopoulos, K.: Pedestrian navigation and shortest path: Preference versus distance. In: Intelligent Environments (Workshops), pp. 647-652 (2013)
Bellman, R.: On a routing problem. Tech. rep., DTIC Document (1956)
Ford, L.R., Fulkerson, D.: Flows in networks. Tech. rep., The RAND Corporation (1962)
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000)
Raafat, R.M., Chater, N., Frith, C.: Herding in humans. Trends in cognitive sciences 13(10), 420-428 (2009). doi:10.1016/j.tics.2009.08.002
Schadschneider, A., Kirchner, A., Nishinari, K.: From ant trails to pedestrian dynamics. Applied Bionics and Biomechanics 1(1), 11-19 (2003). doi:10.1155/2003/292871
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26(1), 29-41 (1996). doi:10.1109/3477.484436
Greenshields, B., Channing, W., Miller, H., et al.: A study of traffic capacity. In: Highway research board proceedings, vol. 1935. National Research Council (USA), Highway Research Board (1935)
Lam, W.H.K., Lee, J.Y.S., Cheung, C.Y.: A study of the bi-directional pedestrian flow characteristics at hong kong signalized crosswalk facilities. Transportation 29(2), 169-192 (2002). doi:10.1023/A:1014226416702
Koutsopoulos, H.N., Bang, K.L., Alhajyaseen, W.K., Nakamura, H., Asano, M.: 6th international symposium on highway capacity and quality of service effects of bi-directional pedestrian flow characteristics upon the capacity of signalized crosswalks. Procedia - Social and Behavioral Sciences 16, 526 - 535 (2011). doi:10.1016/j.sbspro.2011.04.473
Zhang, J.: Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries. Ph.D. thesis, Universität Wuppertal, Jülich (2012). URL http://juser.fz-juelich.de/record/128157
Flötteröd, G., Lämmel, G.: Bidirectional pedestrian fundamental diagram. Transportation Research Part B: Methodological 71, 194 - 212 (2015). doi:10.1016/j.trb.2014.11.001
Ehrecke, L.: Examination of the professional support for a major public event. Bachelor Thesis, Technical University of Munich (2016)
Serr, K., Windholz, T., Weber, K.: Comparing gps receivers: A field study. URISA Journal 18(2), 19-23 (2006)
Zandbergen, P.A., Barbeau, S.J.: Positional accuracy of assisted gps data from high-sensitivity gps-enabled mobile phones. Journal of Navigation 64(03), 381-399 (2011). doi:10.1017/s0373463311000051
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Daniel Helmut Biedermann
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Collective Dynamics agree to publish their articles under the Creative Commons Attribution 4.0 license.
This license allows:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Authors retain copyright of their work. They are permitted and encouraged to post items submitted to Collective Dynamics on personal or institutional websites and repositories, prior to and after publication (while providing the bibliographic details of that publication).